

Parallel Worlds: Agile and Waterfall
Differences and Similarities

M. Steven Palmquist
Mary Ann Lapham
Suzanne Miller
Timothy Chick
Ipek Ozkaya

October 2013

TECHNICAL NOTE
CMU/SEI-2013-TN-021

Software Solutions Division

http://www.sei.cmu.edu

Copyright 2013 Carnegie Mellon University

This material is based upon work funded and supported by the Department of Defense under Contract No. FA8721-05-C-
0003 with Carnegie Mellon University for the operation of the Software Engineering Institute, a federally funded research and
development center.

Any opinions, findings and conclusions or recommendations expressed in this material are those of the author(s) and do not
necessarily reflect the views of the United States Department of Defense.

This report was prepared for the

SEI Administrative Agent
AFLCMC/PZE
20 Schilling Circle, Bldg 1305, 3rd floor
Hanscom AFB, MA 01731-2125

NO WARRANTY. THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN “AS-IS” BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF
FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE
MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH RESPECT TO
FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

This material has been approved for public release and unlimited distribution except as restricted below.

Internal use:* Permission to reproduce this material and to prepare derivative works from this material for internal use is
granted, provided the copyright and “No Warranty” statements are included with all reproductions and derivative works.

External use:* This material may be reproduced in its entirety, without modification, and freely distributed in written or elec-
tronic form without requesting formal permission. Permission is required for any other external and/or commercial use. Re-
quests for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu.

* These restrictions do not apply to U.S. government entities.

Carnegie Mellon®, CMMI® are registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.

Personal Software Process℠, TSP℠ are service marks of Carnegie Mellon University.

DM-0000488

CMU/SEI-2013-TN-021 | i

Table of Contents

Executive Summary viii

Abstract x

Introduction xii

1 The Two Worlds—Traditional and Agile 1
1.1 Background 1
1.2 Waterfall Overview 3
1.3 Agile Overview 9

2 Similarities—The Same Basic Building Blocks 15
2.1 Similarities—Traditional and Agile Share the Same Goal 15
2.2 Similarities—The Traditional World and the Agile World Use Many of the Same Principles15
2.3 Similarities—The Traditional World and the Agile World Use the Same Basic Building

Blocks 16

3 Differences—Significantly Different Perspectives 20
3.1 Differences—Forward-Looking Perspective vs. Backward-Facing Perspective 20

4 Differences—Terms and Concepts 21
4.1 Differences—The Traditional World and the Agile World Do Not Use the Same Words (Or If

They Do, They Don’t Always Have the Same Meanings) 21
4.1.1 Agile World and Traditional World Terms 21

5 Summary 73

Appendix A Waterfall Software Development – DoD’s Misplaced Emphasis? 75

Appendix B History of Agile 81

References/Bibliography 84

CMU/SEI-2013-TN-021 | ii

CMU/SEI-2013-TN-021 | iii

List of Figures

Figure 1: Basic Representation of Waterfall Model 4

Figure 2: DAU Representation of Software Life Cycle 7

Figure 3: The System Development V 8

Figure 4: Agile Life Cycle 13

Figure 5: Requirements Moving En Masse Through the Process 17

Figure 6: Blocking and Increment Techniques 18

Figure 7: Agile Building Blocks 18

Figure 8: Royce Model #1 76

Figure 9: Royce Model #2 77

Figure 10: Royce Model #3 78

CMU/SEI-2013-TN-021 | iv

CMU/SEI-2013-TN-021 | v

List of Tables

Table 1: Agile Instantiations of Traditional Principles 16

CMU/SEI-2013-TN-021 | vi

CMU/SEI-2013-TN-021 | vii

Acknowledgments

The authors would like to thank John Hawrylak of the SEI for his insight reviewing this docu-
ment.

In addition, the authors would like to thank the following members of the Agile Collaboration
Group for their suggestions, comments, and reviews:

• Jennifer Walker (Raytheon Company)

• Curtis Hibbs (The Boeing Company)

• Richard Carlson (The Boeing Company)

CMU/SEI-2013-TN-021 | viii

Executive Summary

The purpose of this technical note is to help people who are familiar with the DoD’s “Traditional
World” of waterfall-based software development understand the terms, tasks and phases that are
used in the “Agile World” of Agile software development methods. The technical note should
also assist those readers who are more familiar with Agile software development methods better
understand the DoD environment.

The technical note does not champion either development approach, but rather provides a Rosetta
Stone1 to help practitioners familiar with either development approach better understand the lan-
guage used by the other. Nor does the technical note claim that the approaches are equivalent—
only similar in that they use the same building blocks (but use them differently).

The first section of the technical note provides background material. It provides an overview of
the waterfall software development method as well as a discussion of how this came to be the
foundation of DoD’s “traditional” approach to developing software systems.2 This section goes on
to provide an overview of Agile software development methods.

The second section of the technical note discusses some of the similarities between the Traditional
World and the Agile World. The third section of the report is devoted to a single discussion of a
philosophical distinction between the Traditional World and the Agile World.

The fourth section of the technical note is a series of tables describing 25 select Traditional World
and Agile terms. Each table defines the term or concept, describes where it might be used, and
identifies associated terms or concepts.

The technical note concludes with a summary and an appendix which provide greater detail about
the origins of the waterfall software development method and its history in DoD.

The authors hope that this technical note stimulates discussions among practitioners in both the
Agile community and the waterfall community so that terms and definitions can be added, updat-
ed, or removed as needed.

1 The Rosetta Stone (Egypt, Ptolemaic Period, 196 BC) is a decree inscribed in a stone written in three scripts

(hieroglyphic, demotic, and Greek); because it was the same decree written in multiple languages, it was an in-
valuable key to deciphering the hieroglyphs.

2 We understand that the waterfall paradigm has morphed since it was first conceived in the 1970s, with the sys-
tem engineering V diagram emerging as one of the most widely-used variants. For the purposes of this paper,
however, we will use the term waterfall to characterize this approach.

CMU/SEI-2013-TN-021 | ix

CMU/SEI-2013-TN-021 | x

Abstract

This technical note (TN) is part of the Software Engineering Institute’s series on Agile in the De-
partment of Defense (DoD). It primarily addresses what at first seems a small issue on the road to
Agile adoption—the confusion of terms. However, this is a much larger issue, as ineffective
communications among and between stakeholders is often cited as a significant stumbling block
on any project.3 Confusion over simple terms is a needless hurdle.

Many terms and concepts used by Agile practitioners seem to confound those working in the
DoD’s Traditional World of waterfall-based environment, and vice versa. The goal of this paper is
to assemble terms and concepts from both environments to show both the similarities (of which
there are many) and differences (of which there are also many).

A comprehensive cross dictionary was beyond the scope of this work; the authors strove to select
from those terms most commonly encountered when considering Agile adoption. Therefore, the
authors selected terms based on suggestions from both inside and outside the SEI, but deliberately
limited themselves to 25 terms from each environment.

3 Poor Communications, Unrealistic Scheduling Lead To IT Project Failure; K.C. Jones, Information Week;

http://www.informationweek.com/poor-communications-unrealistic-scheduli/198000251

CMU/SEI-2013-TN-021 | xi

CMU/SEI-2013-TN-021 | xii

Introduction

Developing software using the waterfall paradigm or one of its derivatives has become so en-
twined with the Department of Defense (DoD) acquisition system (at least in perception) that it is
often difficult to pry them apart. In light of that, it is the combination of these two spheres that we
call the “Traditional World” in this technical note.

This means that the Traditional World is not just the waterfall software development methodology
itself but is the entire environment, laws, and regulations that have grown up around it. This in-
cludes the acquisition community, the requirements community, the test community, the man-
agement community, the development community, the oversight community, and the like.

These stakeholders are the target audience for this report. In light of the DoD’s recent emphasis
on incorporating Agile software development methods into this environment, our goal is to help
people familiar with the Traditional World understand the terms and concepts of the “Agile
World.” We also include a short description of the Traditional World to help Agile practitioners
who may be unfamiliar with its history and concepts.

We will point out similarities and differences between the two methods (Traditional and Agile).
The similarities in terms are not exact in most cases but only likenesses in each world. The paral-
lels we draw we hope can be used to help dispel the fear of the unknown which could lead to re-
jection.

Section 1 begins with a brief overview of the waterfall design methodology as well as some con-
text as to how it became to be the Department of Defense’s tradition. We describe the waterfall
development methodology separately from the DoD acquisition process, for they are indeed com-
pletely separate. However, for the dictionary tables that follow we included a number of DoD ac-
quisition-related and systems engineering-related terms as we feel they are critical to our goal for
this work. Some examples of these DoD acquisition or system engineering-related terms are
“earned value management” and “critical path” as well as other terms and jargon such as “ball
park estimate”.

Section 1 continues with a brief overview of the Agile development methodologies, with an em-
phasis on eXtreme programming (XP) and Scrum expressions as they represent two of the most
prevalent Agile methods.

Section 2 is a high-level discussion of some of the similarities between the Traditional World and
the Agile World. It primarily focuses on the observation that both the Traditional World and the
Agile World—as with all software development methods—use the same basic building blocks,
such as requirements, test, design, etc.

Section 3 goes on to observe that while the basic building blocks are the same, the two worlds are
separated by appreciably different perspectives on how these building blocks are used.

Section 4 is a Traditional-to-Agile and an Agile-to-Traditional dictionary to assist practitioners of
both methodologies understand the terms used by the other.

CMU/SEI-2013-TN-021 | xiii

Section 5 is a summary of the technical note.

In creating this document, the SEI drew from a number of sources including but not limited to
these documents and websites:

1. DAU Glossary of Defense Acquisition Acronyms and Terms, 14th Edition, July 2011

2. http://www.aspe-sdlc.com; Agile Glossary: Words and Terms Common to Agile Methods

3. ISA/IEC/IEEE 24765 Systems and Software engineering – Vocabulary; December 15, 2010

4. http://www.telerik.com/agile-project-management-tools/agile-resources/vocabulary.aspx

5. PMBOK Guide® – Third Edition

6. http://www.accurev.com/wiki/agile-glosssary

7. http://www.develop.com/agiledemystified

8. http://xprogramming.com/book/whatisxp/

CMU/SEI-2013-TN-021 | 1

1 The Two Worlds—Traditional and Agile

1.1 Background

The DoD has a long history with software development, including a number of techniques that in
today’s parlance would be considered “Agile” or even “extreme.” As with all emerging technolo-
gies however, software engineering has had its share of issues, in part due to the heavy influence
of hardware-oriented development approaches on software development. In response to the
“software crisis” of the late 1960s DoD took steps designed to control the development of com-
plex software-intensive systems4.

As one example, in the 1970’s DoD created Ada to serve as a department-wide standard pro-
gramming language to satisfy the Department’s requirements for embedded and mission-critical
software. DoD also hoped that Ada would encourage good software engineering.5

For a variety of reasons that seemed sound at the time, DoD began issuing a series of standards
and policies that discounted or moved away from its more-Agile experiences, instead pushing a
rigidly sequential, big design up front (BDUF), big test at the end, “document everything” ap-
proach.

This approach came to be called waterfall due to several common graphical representations of the
approach. Even at its inception, however, many experts cautioned that the notion that DoD’s
large, complex software development efforts could be controlled with a rigidly-controlled, docu-
ment-intensive and review-intensive approach would not work. There is some irony in that a simi-
lar message was very visible in popular culture at the time:

"The more you tighten your grip, Tarkin, the more star systems will slip
through your fingers.6”

History has unfortunately proven these cautions to be correct. It is true that projects and programs
using the DoD acquisition paradigm and waterfall software development methods (i.e., the Tradi-
tional World as we have defined it) have delivered solid and even sometimes spectacular results.
However, it is also true that the word “spectacular” was often used to describe a waterfall failure,
not a success.

DoD did in fact begin backing away from waterfall almost as soon as it issued the initial man-
dates.7 Even the term waterfall has not been officially used in DoD for a number of years.8 Even

4 For a brief description of this, please see Appendix A.

5 Committee on the Past and Present Contexts for the Use of Ada in the Department of Defense, National Re-
search Council. "The Changing Context for DOD Software Development." Ada and Beyond: Software Policies
for the Department of Defense. Washington, DC: The National Academies Press, 1997

6 Princess Leia to Grand Moff Tarkin; Star Wars: Episode IV – A New Hope (1977)

7 In 1986, a draft copy of Revision A to MIL-STD 2167 appeared which removed the emphasis on top-down de-
sign and called out rapid prototyping as an alternative to the waterfall.

8 Acquisition Strategy Considerations, 2000 Department of Defense Instruction Number 5000.2; October 23,
2000; the term waterfall is not used but is called a “single step to full capability.”

CMU/SEI-2013-TN-021 | 2

with this, however, waterfall software development methodology continued to be a major—if not
the dominant—influence on DoD software acquisition and development.

It was in part a reaction to the “analysis paralysis” and other waterfall issues that gave rise to the
movement we now call Agile. In writing about the Agile Manifesto’s origins, Jim Highsmith says
the group was driven by “the need for an alternative to documentation driven, heavyweight soft-
ware development processes” —which is how the waterfall methodology was (and is) frequently
characterized [Highsmith 2001]. The Agile Manifesto is a short philosophical summary of the
group’s values regarding software development [Beck 2001]:

• Individuals and interactions are valued more than processes and tools.

• Working software is valued more than comprehensive documentation.

• Customer collaboration is valued more than contract negotiation.

• Responding to change is valued more than following a plan.

There is no hiding that if you over-emphasize wrong aspects of process and tools, comprehensive
documentation, contract negotiation, and following a plan you will have the worst of waterfall.
On the other hand, if you over-emphasize wrong aspects of individuals and interactions, working
software, customer coloration, and responding to change you will have “cowboy coding”—a fre-
quent but erroneous characterization of Agile. An incorrect emphasis on the left-hand side of
each statement would also not be successful in the DoD environment. The right side is still of val-
ue and if completely ignored the development effort will fail. This is central to the debate about
Agile scalability—a balance between the two must be maintained.9

Highsmith went on to say:

The Agile movement is not anti-methodology; in fact, many of us want to re-
store credibility to the word methodology.

We want to restore a balance.

We embrace modeling, but not in order to file some diagram in a dusty corpo-
rate repository.

We embrace documentation, but not hundreds of pages of never-maintained
and rarely-used tomes.

We plan, but recognize the limits of planning in a turbulent environment.

Those who would brand proponents of XP or Scrum or any of the other Agile
Methodologies as "hackers" are ignorant of both the methodologies and the
original definition of the term hacker.

As Highsmith implied and we agree, the new world of Agile methods and the Traditional World’s
waterfall-based methods are not opposites; they are just different perspectives which place differ-

9 Agile scalability is a topic of much interest, research, and debate and it beyond the scope of this report; howev-

er it is an important enough issue that we felt the need to acknowledge it.

CMU/SEI-2013-TN-021 | 3

ent emphasis on similar parts. Depending on the project’s needs, a combination of both methods
may be most appropriate. It does not have to be an either-or proposition.

Surprisingly, we did not discover much material exploring the concept that Agile methods and
Traditional waterfall methods are simply different perspectives of and emphasis on the same fun-
damental activities. In many ways, we feel that this could have been one of the seminal discus-
sions in the early stages of the Agile movement as it would have eased the misunderstandings and
mistrust that plagued the early attempts to incorporate Agile principles into the Traditional water-
fall world.

The remainder of this report will discuss the different perspectives that represent the Agile and
Traditional views of software development. As we will argue, the what is the same (requirements,
design, code, test, integrate, deploy), but the how can be quite different.10 To make it more con-
fusing, some of the same terms are used in both environment but have different meanings. Thus,
the context is important. We will identify and define the more common terms used within both
Agile and Traditional, provide definitions, and provide an explanation of how they do—or
don’t— relate.

1.2 Waterfall Overview

Note: this brief overview is intended for the reader who is not familiar with the waterfall software
development model, and it is deliberately shorter than the Agile Overview as most readers are
assumed to be from the Traditional World. For a more in-depth discussion, please see Appendix
A.

Before we begin our discussion of the Traditional World, we want to emphasize that the people
credited with the creation of the “waterfall method” apparently never envisioned it as a solution to
DoD’s complex software development problems. Dr. Winston Royce, the man who is often but
mistakenly called the “father of waterfall” and the author of the seminal 1970 paper Managing the
Development of Large Software Systems, apparently never intended for the waterfall caricature of
his model to be anything but part of his paper’s academic discussion leading to another, more iter-
ative version [Royce 1970].

In his paper Royce argued for a more-iterative version of his “waterfall” model, and went so far as
to say that even his more-iterative model was “risky and invites failure.” He further goes on to
discuss the additional steps he felt were needed even to allow even the more-iterative models to
be successful. These included his recommendation that this model be run at least twice (iterative-
ly), with the first time being a significant prototyping phase that was used to better understand the
requirements, better understand the technologies involved, and ensure it was providing what the
customers actually needed.

It is especially prophetic that Royce stated that “one could expect up to a 100-percent overrun in
schedule and/or costs” if the additional steps were not incorporated.

Walker Royce, Royce’s son, said this of his father:

10 But the reader must be cautioned we are not talking about coding per se; coding is still coding in both worlds

but there is a great difference in how requirements are prioritized and managed, work is planned, testing is con-
ceived and implemented, etc.

CMU/SEI-2013-TN-021 | 4

“He was always a proponent of iterative, incremental, evolutionary development. His paper de-
scribed the waterfall as the simplest description, but that it would not work for all but the most
straightforward projects. The rest of his paper describes [iterative practices] within the context of
the 60s/70s government contracting models (a serious set of constraints) [Larman 2003].”

Royce also emphasized a main element of what would be called “Agile” nearly three decades later
when he recommended that the customer be involved well before testing as “for some reason what
a software design is going to do is subject to wide interpretation even after previous agreement.”

However—and for a variety of reasons the discussion of which is outside the scope of this pa-
per—Royce’s cautions were not incorporated into DoD software directives. For example, DOD-
STD-2167 (1985) Section 4.8 Development methodologies states that “The contractor shall use a
top-down approach to design, code, integrate, and test all CSCIs …” Also, the lower half of Fig-
ure 1 in DOD-STD 2167—the graphic used to illustrate software (CSCI) development—used a
graphic from the early part of Royce’s paper—not the graphic he used later in his paper, which at
least indicated iterations.

In its most basic representation, the waterfall model has these main blocks11 as shown in Figure 1:

Figure 1: Basic Representation of Waterfall Model

11 In this representation we have added Software Requirements as the follow-on step to System Requirements as

many systems are not software only.

System

Requirements

Software

Requirements

Analysis

 Design

Coding

Test and
Integration

Operations

CMU/SEI-2013-TN-021 | 5

From this representation, we can see the main points that—rightly or wrongly—came to be the
pillars of the Traditional World’s waterfall-based software development approach:

• Systems are developed in a sequential process (at times even in a single pass).

• All requirements are determined up front, with the dual assumptions that they can all be
known up front, and that they are and will remain unchanging.

• Analysis is done once, and precedes design.

• Design is done once, and precedes coding.

• All coding is done once, and precedes testing and integration.

• All testing is done once followed by or in conjunction with integration activities, and pre-
cedes operational use.

Not included in this depiction (except by a generous interpretation of the arrow linking each box)
are these points:

• Formal review and approval is required to proceed from any one step to the next.

• The customer is most involved setting the requirements, mostly disappears during analysis
design, and coding,12 and re-emerges during test and acceptance.

• Extensive documentation is required for each and every step.

There were a number of reasons why this approach seemed sound, and we cannot overstate that
this approach was a response to risk and uncertainty. This approach was seen as a risk manage-
ment technique, and was born in a time when system development itself was both hardware-
centric13 and happened at a much slower pace than we see today.

Some of the key risk management points and their rationale that were incorporated into the tradi-
tional, waterfall-based world included

• early identification of all the requirements was needed to support planning and budgeting

• identifying and locking down the requirements early in the program would prevent scope
creep

• documenting all aspects of design and decision-making was needed for future reference

• extensive reviews would not only ensure all stakeholders were aware of progress, but they
would also allow issues to be uncovered earlier

• all requirements needed to be documented before any design work began to ensure the archi-
tecture was adequate

• all coding needed to be complete before test to ensure the entire system’s capabilities could
be evaluated

• all requirements had to be met before the system could be fielded

12 The customer is involved in design reviews during these stages, but these have generally devolved into cap-

stone meetings preceded by numerous technical interchange meetings

13 “The main goal of software development was to exploit the limited hardware resources (storage and processing
power) in an optimal way.”; A Synopsis of Software Engineering History: The Industrial Perspective; Albert En-
dres; Position Papers for Dagstuhl Seminar 9635 on History of Software Engineering, August 26-30, 1996

CMU/SEI-2013-TN-021 | 6

Taking all of these together creates the framework for the Traditional World. It has undergone
many evolutions over the last several decades, including recent efforts to make it more “agile.”
For Example, Section 804 of the 2010 National Defense Authorization Act (NDAA) cites many
principles that parallel Agile methods:

• early and continual involvement of the user;

• multiple, rapidly executed increments or releases of capability;

• early, successive prototyping to support an evolutionary approach; and

• a modular, open-systems approach.

As another example, Figure 2 is a depiction of the process from a Defense Acquisition University
(DAU) presentation The Defense Acquisition System; note that the guidance indicates a program
may proceed using either Evolutionary Acquisition or Single Step to Full Capability (i.e., water-
fall) [Wills 2010].

While Figure 2 doesn’t use the classic waterfall steps as it moves from left to right, it still main-
tains the basic concepts: system requirements are determined up-front, system analysis precedes
design, system design precedes construction, and system construction precedes deployment.

CMU/SEI-2013-TN-021 | 7

 Figure 2: DAU Representation of Software Life Cycle

6 Aug 2010 7

The Defense Acquisition Management System

Decision points: 6 Phases: 5 Milestone documents: 40+

Relationship to JCIDS

Operations &
Support

IOC

Engineering & Manufacturing
Development

Production &
Deployment

Pre-Systems Acquisition Systems Acquisition

Operations &
Support

Sustainment

Technology Opportunities & Resources

Materiel
Solution
Analysis

Technology
Development

Post CDR
Assessment

FRP
Decision
Review

FOC

Materiel
Development
Decision

User Needs

CDR

Disposal

• The Materiel Development Decision precedes
entry into any phase of the acquisition framework

• Entrance criteria met before entering phases
• Evolutionary Acquisition or Single Step to Full

Capability

PDR

BA C

ICD CDD CPD

Initial Capabilities
Document (ICD)

Capability Development
Document (CDD)

Capability Production
Document (CPD)

CMU/SEI-2013-TN-021 | 8

However, while this report uses the waterfall methodology as our primary framework for the Tra-
ditional World, we don’t mean to say that waterfall is the only software development paradigm
used by the Traditional World. For example, Figure 3 is from the Federal Highway Administra-
tion’s Systems Engineering for Intelligent Transportation Systems.14

As the reader can see, the yellow-boxed phases across the top effectively match the phases from
the DAU document. The blue-boxed system engineering V also effectively matches the waterfall
process: development is still sequential, requirements are determined up-front, analysis is done
once and precedes design, etc.

Figure 3: The System Development V

It is true that most major development programs can or will use the waterfall or the system engi-
neering V process many times as a system moves through the different phases in the program life
cycle. It is also true that the V model also incorporates testing at each phase (continuous or near-
continuous test and integration is emphasized in Agile methods). However, it still retains the same
basic issues that plague the waterfall paradigm:15

14 Adapted from http://ops.fhwa.dot.gov/publications/seitsguide/section6.htm

15 Adapted http://www.waterfall-model.com/v-model-waterfall-model/

System Validation

System Verification

Sub-System
Verification

Unit
Test

CMU/SEI-2013-TN-021 | 9

• It assumes that the requirements and their order and priority do not change.

• The design is not authenticated until later in the program, and only then as part of system and
sub-system performance.

• At each stage there is a potential of errors; the first testing is done after the design of modules
which is very late and costs a lot.

1.3 Agile Overview

Agile is not one specific method; Agile is both a philosophy and an umbrella term for a collection
of methods or approaches that share certain common characteristics. One definition for Agile is
[Lapham 2010]:

An iterative and incremental (evolutionary) approach to software development which is per-
formed in a highly collaborative manner by self-organizing teams within an effective governance
framework with “just enough” ceremony that produces high quality software in a cost effective
and timely manner which meets the changing needs of its stakeholders.16

This definition is rather long but it covers our purposes. If a shorter definition is desired, Alistair
Cockburn has said that Agile is the “… early delivery of business value. That involves early and
regular delivery of working software, a focus on team communications, and close interaction with
the users.”17

To mimic our waterfall characterization, Agile development approaches have these main points:

• Requirements are characterized up-front, and assumed to be changing.

• Systems evolve during a series of short iterations, where analyze, design, code, test, and po-
tentially shippable code happens each iteration.18

• Customer participation and approval is required during each iteration and to make the deci-
sion to proceed to the next iteration.

• Documentation is developed only as needed and is often tailored for the project.

As a first foray into how Agile is used, we will present an example of how Agile methods might
be used on a government software development project. We must be very clear—this example is
for discussion only. It is not meant to be all-inclusive, it includes steps or processes that are not
used by all Agile practitioners, and it incorporates elements of multiple Agile methods.19

Our purpose for this description is to help someone not familiar with Agile methods see how they
might be used in a government acquisition program. Again—this should not be interpreted as a
recommended approach but as an illustration.

16 http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm

17 http://bradapp.blogspot.com/2006/05/nutshell-definitions-of-agile.html

18 This is a nominal representation as sometimes iterations are collected into a release before going to operations.

19 Principally Scrum and eXtreme programming, or XP; sources include eXtreme Programming and SCRUM: A
Comparative Analysis of Agile Methods by Nicholas R. Zuiderveld (Portland State University),
http://www.scrumalliance.org/learn_about_scrum, and http://www.jera.com/techinfo/xpfaq.html

CMU/SEI-2013-TN-021 | 10

• The government describes its needs by creating a vision for its system.

• The government creates a list of relatively coarse-grained, high-level requirements, and indi-
cates which are the most important — i.e., the government creates a prioritized backlog of
product requirements.

• Several development contractors describe their proposed approach to meeting the govern-
ment’s needs, and this includes a high-level cost estimate.

• After the government selects one development contractor, the government and the contractor
agree on the overall scope of the project—the system goals, the budget, and the schedule.

− The government and the development contractor jointly create an overarching, high-

level plan or roadmap.

− Both parties agree that the government’s description of its needs—however thorough—

is incomplete and will evolve (i.e., requirements and their priority will change).

− Both parties agree that the development contractor’s software development process –

however efficient—can be managed but not fully planned (i.e., risks happen).

• The high-level requirements are fleshed out by putting each into a context of environment,
inputs, products, etc. to make them easier to understand and communicate; i.e., a small story
is written about each.

• The development contractor refines its estimates of how long and how much it will take to
build the capability or feature set needed to implement a requirement/story; in addition it as-
sesses the risks associated with each.

• The product backlog is then groomed to balance the government’s priorities (what the users
need first) and the development contractor’s risks (what risks and issues must be explored and
resolved in order for system construction , deployment, and operation to be successful).

• Using the prioritized product backlog, the Roadmap is then broken down into a series of re-
leases.

− The requirements are allocated in light of a cross-cutting view of the overarching high
priority architectural requirements that must take place to achieve the success of the iter-

ations.

− The highest priority requirements/stories are allocated to the first release to create its re-
lease backlog, with the next highest priority requirements allocated to the second release
to create its release backlog, and so on.

− Each release in the roadmap has a release plan, with earlier releases having greater detail
than later releases.

• The releases are broken down into one or more iterations (or sprints) which can range in du-
ration from two weeks to two months—but two to four weeks is typical.

− The iterations are deliberately kept to short, manageable time blocks to better manage
planning and maintain team focus as well as to allow for frequent product demonstra-

tions and team process improvement.20

20 In a typically IT-oriented project, this would be the rate of consumption of features, but in a project such as a

safety-critical aircraft project not all of these releases are customer-facing but can be internal releases.

CMU/SEI-2013-TN-021 | 11

− The refined cost and schedule estimates are used to ensure the work allocated to the iter-

ation is realistic.

− The highest priority requirements/stories from the release backlog are allocated to the
first iteration to create its iteration backlog, the next highest priority requirements are al-

located to the second iteration to create its iteration backlog, and so on.

− Each iteration in a release has an iteration plan, with earlier iterations in the release

planned in greater detail and later iterations planned in less detail.

• The iterations are broken down into a series of daily work assignments (sometimes called
tasks) for the development team.

• During each day’s work

− The team holds a daily stand-up meeting where each team member states what work
they completed, what they will work on next, and identifies any issues or roadblocks

they are facing.21

− The code base is continuously integrated and often tested at least once a day,22 and the

code base must pass all tests after integration.

• During each iteration

− The government (i.e., the customer) cannot add more requirements to the iteration, but it

can clarify the requirements already allotted to the iteration.

− The team maintains large, visual displays of progress and problems to keep all team
members informed; these displays (sometimes called information radiators) can be elec-

tronic and may be accessed via a tool as opposed to just displayed.

− The release backlog is groomed and the plan for the next iteration is refined to allow for

uninterrupted work (i.e., rolling wave planning).

• At the end of each iteration

− The development contractor will demonstrate or deliver some working, useful capability

to the government.23

− Once the government is satisfied, the capability is prepared for release or carried forward

into the next iteration (depending on the release plan).

− If appropriate, training materials and documentation are completed.

− If there are any unfinished capabilities, they are placed back in the backlog. Reprioritiza-
tion may occur as their priorities may have changed and depending on the “new” priority

they could be included in the next iteration.

− The government and the contractor hold a retrospective to review what worked and what

didn’t work.

• At the end of each release

− The development contractor will deliver at least one useful capability.

21 Solutions to the issues or roadblocks are not reached during the stand-up. Follow-up meetings or discussions

are scheduled to accomplish that effort.

22 Continuous integration and regression testing is typically employed at least daily, and sometimes more often
depending on how the processes are instantiated.

23 This is potentially shippable code. However, many times it is not deployed for operational reasons or perhaps
because it provides some of the infrastructure for the rest of the software.

CMU/SEI-2013-TN-021 | 12

• Releases and iterations continue until

− All desired capabilities have been delivered (the government can chose to accept a less-

than-complete product if “enough” of the capabilities have been incorporated).

− The money runs out.

− The schedule deadline is reached.

Unlike waterfall, government user involvement is heavy during all phases of the work. In fact, the
need for dedicated government representatives (product owners in Agile parlance) skilled in Agile
methods is one of the biggest challenges that Agile brings to the Traditional World.

 Figure 4 shows this Agile process.

CMU/SEI-2013-TN-021 | 13

1

Sprint Backlog
(Highest Priority

Requirements from the
Release 1 Backlog)

Iteration 1
(Ex. - 3 weeks)

Iteration X
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements Remaining in
the Release 1 Backlog)

Iteration 1
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements from the
Release2 Backlog)

Iteration X
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements Remaining in
the Release 2 Backlog)

Iteration 1
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements from the
Release X Backlog)

Iteration X
(Ex. - 3 weeks)

Sprint Backlog
(Highest Priority

Requirements Remaining in
the Release X Backlog)

Daily Work Daily Work Daily Work Daily Work Daily Work Daily Work

Release Backlog
(Highest Priority Requirements in the Product

Backlog)

Release 1 Release 2 Release X …

Release Backlog
(Highest Priority Requirements Remaining in the

Product Backlog)

Release Backlog
(Highest Priority Requirements Remaining in

the Product Backlog)

Roadmap

Militarily
Useful

Capability

Militarily
Useful

Capability

1

2

3

Militarily
Useful

Capability

Product Backlog
(Requirements

Generation)

1

2

3

1

2

3

Significant User Involvement With Continuous Integration and Test (Developmental, Operational, Interoperability, Security – Test Driven Development)

Significant User Involvement With Frequent Retrospectives and Reviews (Daily Meetings, Sprint Retrospective(s), Release Retrospective(s), Project Review)

Significant User Involvement With Disciplined Planning (Product Vision, Product Roadmap, Release Plan(s), Sprint or Iteration Plan(s), Daily Commitment)

 Figure 4: Agile Life Cycle

CMU/SEI-2013-TN-021 | 14

An important point here is that Agile is a disciplined planning process, including understanding
requirement dependencies, potential groupings and infrastructure needs. Agile planning also in-
cludes other technical practices such as configuration management, testing, and the like as part of
this disciplined planning perspective.

CMU/SEI-2013-TN-021 | 15

2 Similarities—The Same Basic Building Blocks

2.1 Similarities—Traditional and Agile Share the Same Goal

What is sometimes lost in Traditional World/Agile World discussions is the fact that both groups
have the same goal—to deliver a quality product in a predictable, efficient and responsive man-
ner. Both worlds do the same “types” of things—define, gather, analyze, design, code, test, re-
lease, maintain, retire—it’s how they do these things that are different.

However, we want to point out that while there are similarities, there are significant differences.
The two methods cannot be thought of as the same.

2.2 Similarities—The Traditional World and the Agile World Use Many of the
Same Principles

As we showed in a previous section, the Traditional World grew out of the perception that the
best way to manage the “software crisis” was to:

• plan the work out completely before beginning

• lock down requirements early

• institute multiple reviews24

• move forward in a step-by-step, sequential manner

• move forward only when all parts of the previous steps were complete

• capture all details with extensive documentation

Taken individually, it’s difficult to argue with these if they are appropriate (i.e., you really can
state all your requirements up front) and they are done wisely. For example, gold-plating should
be avoided; progress reviews are reasonable management tools; senior leaders do need to be kept
informed of progress and issues; designs should be documented to support future work, etc.

Because these principles have value, they are used in the Agile World as well; here is an example
of the parallels:

24 It is ironic that what is frequently lost in the Agile-Traditional discussion is that Agile’s emphasis on frequent

demonstrations of working software constitute and facilitates the review process, only in a more realistic fash-
ion.

CMU/SEI-2013-TN-021 | 16

Traditional Principles Agile Instantiation

Plan the work—especially the budget,
schedule, and deliverables—to the maxi-
mum extent possible before beginning any
design or code.

• Near-term plans contain more detail, while plans further out
on the time horizon contain fewer details.

• The overall vision is broken down into a roadmap, which is
further broken down into release plans, which are further
broken down into sprint or iteration plans, which are further
broken down into daily plans.

• Requirements are prioritized.
• Cost and schedule estimates are prepared for each capabil-

ity at a high level. Relative estimation versus absolute esti-
mation is employed.

• Frequent planning sessions (at the beginning of each itera-
tion) result in detailed, high-fidelity plans.

• Risks are assessed and risk mitigation influences planning.

Lock down requirements to prevent gold-
plating and scope creep.

• No requirements can be added to an iteration once it has
started.

• New requirements are evaluated by the stakeholders and
prioritized thus preventing gold-plating and scope creep.

Institute multiple reviews to provide senior
leadership oversight as well as to serve as
gates for continued work.

• The customer is involved in all aspects of planning and test-
ing. Customer (in the form of the product owner) is involved
daily.

• There are reviews at the end of each iteration that serve as
gates to further work.

Move forward in a step-by-step, sequential
manner and only when all parts of the
previous steps were complete.

• The code base is integrated and tested daily.
• The code base must pass all tests before and after integra-

tion. Regression testing is typically done each night.

Capture all details with extensive docu-
mentation.

• There is an overall plan.
• There are requirements descriptions.
• There are cost and schedule estimates.
• There are risk assessments.
• There is training material (as appropriate).
• There is documentation (as appropriate).
• There are lessons learned (based on retrospectives).

Table 1: Agile Instantiations of Traditional Principles

2.3 Similarities—The Traditional World and the Agile World Use the Same Basic
Building Blocks

Both the Traditional World and the Agile World also work with the same basic programmatic
building blocks:25

• scope

• cost

• schedule

• performance

In its simplest form, the Traditional World sets the scope up front (through requirements) and then
allows cost, schedule, and performance to vary. Again in its simplest terms, the Agile World sets
the cost, schedule, and performance up front and then allows the scope to vary.26

25 For simplicity, performance includes all of the “ilities”—quality, interoperability, security, modifiability, etc.

CMU/SEI-2013-TN-021 | 17

In addition, both the Traditional World and the Agile World use the same technical or develop-
ment building blocks:27

• analyze the requirement

• design a capability to satisfy the requirement

• build the capability

• test the capability to ensure the requirement is met

• deploy the capability

In the Traditional World, the requirements are fixed and the five building blocks move forward en
masse each step in sequence with heavy documentation and formal approval required, as shown in
Figure 5:

Figure 5: Requirements Moving En Masse Through the Process

Sometimes these requirements are “blocked out” or delivered in planned increments28 as shown in
Figure 5, but the effect is still the same because the requirements for all of the blocks are deter-
mined all the way to the left up front. Blocking and increments then are simply techniques to
manage schedule and resources but the sequential paradigm remains (see Figure 6).

26 As with all generalities, there is danger in this simplification. For example, many DoD project managers would

argue that their schedule is fixed more than scope (requirements), though more accurately both schedule and
requirements are fixed together.

27 Material for this section—in particular the graphics—is adapted from http://www.agile-process.org/process.html

28 Sometimes referred to as Pre-Planned Product Improvements, or P3I

Requirements
Document

Requirement #1

Requirement #2

Requirement #3

Requirement #4

Requirement #5

Analyze Design Build Test Deploy

CMU/SEI-2013-TN-021 | 18

Figure 6: Blocking and Increment Techniques

The Agile World uses the same building blocks—it just looks at these things differently than the
Traditional World as shown below (Figure 7).

Figure 7: Agile Building Blocks

Agile Process

Analyze

Design

Build

Test

Deploy

High-Priority
Requirement

Next High
Priority

 Requirement

Next High
Priority

 Requirement

Next High
Priority

 Requirement

Next High
Priority

 Requirement

Requirement

Requirement

Analyze Design Build Test Deploy

Requirement

Requirement

Analyze Design Build Test Deploy

Requirement

Requirement

Analyze Design Build Test Deploy

Block 1

Block 3

Block 2

CMU/SEI-2013-TN-021 | 19

Pure Agilists may not fully agree with this representation, but it does convey two key points in the
context of this technical note. The first is that Agile does all of the things with which a Traditional
World person is familiar—they are captured on the left-hand side. That leads to key point number
one—Agile methods are disciplined, managed processes.

Key point number two is that what’s “built next” is always evolving—it’s the highest priority as
each iteration begins. One argument against Agile is that this flexibility is Agile’s undoing in the
world of immense DoD systems. The Traditional World already struggles with changing require-
ments when requirements are supposedly fixed—how could Agile possibly work in the DoD if
customers were actually encouraged to add or reprioritize requirements?

And to do that every 30 days?

There are several flaws in this thinking. First, it’s true that an undisciplined customer could at-
tempt to continuously move their latest “flavor of the month” to the top of the backlog. However,
for a requirement to rise to the top of the priority list it must be justified and it must have real re-
turn on investment determined.

Second, it is true that Agile—as with any development approach—can produce the wrong system
if flaws exist in many areas:

• the initial description of the need (reacting to symptom, not causes, etc.)

• setting the initial scope

• breaking down the requirements

• initial risk assessments

• initial cost and schedule estimates

• and so forth

However, Agile is geared towards detecting these flaws—it is designed to fail early, correct
course, learn, and improve. As a simple example, in an Agile program working software is tested
and integrated daily and demonstrated to the user as often as every two to four weeks, which al-
lows for frequent assessments as to whether the program is on track.

In the Traditional World, building the wrong system is more likely due to the fact that the re-
quirements are set years in advance and are deliberately resistant to change. Given

• the time between the requirements studies and the creation of a capstone or requirements doc-
ument

• the multiple years to get into the federal budget process

• the months-to-years to select a contractor

• the (possibly) multiple years before a product is delivered

programs are often lucky the requirements were only half a decade old.

In the Traditional World, requirements don’t change. However, the likelihood that a product built
to fixed, half-decade old requirements will still fully meets the users’ needs and expectations in an
ever-changing world of threats and technology is simply not realistic.

CMU/SEI-2013-TN-021 | 20

3 Differences—Significantly Different Perspectives

3.1 Differences—Forward-Looking Perspective vs. Backward-Facing Perspective

Perhaps the most important section in this technical note:

• In a dynamic environment like the DoD, the Traditional World struggles to deliver as it con-
stantly looks back at long-fixed requirements and priorities.

• In a dynamic environment like the DoD, the Agile World adapts as it delivers by constantly
looking forward at evolving requirements and priorities.

CMU/SEI-2013-TN-021 | 21

4 Differences—Terms and Concepts

4.1 Differences—The Traditional World and the Agile World Do Not Use the
Same Words (Or If They Do, They Don’t Always Have the Same Meanings)

It is a bit like British English and American English, where sometimes the same word can mean
different things. For example, in England a caravan is a towed trailer that provides a place to sleep
when on a vacation,29 while in the U.S. a Caravan is a minivan made by Chrysler, or a stream of
cars all going to the same place, as in “let’s caravan to the lake this weekend.”

Alternatively, the same item can be called by different names. Consider the large piece of sheet
metal covering the engine bay on most cars. It’s a basic component of every car in the world, but
why do two people with presumably the same language and presumably the same goal (e.g.,
check the oil) call it by such different terms?

But then again, sometimes the engine is in the back or the middle, so “hood” or “bonnet” doesn’t
describe what you want in either case, which actually is a good segue back to the issue at hand.

The Traditional World and the Agile World both use the same principles and building blocks—
just like all cars have engines—but they are put in different places for different design or perfor-
mance considerations, and are sometimes accessed via different routes.

With that in mind, we’ve selected a small set of terms, activities, products, or roles from both the
Agile World and the Traditional World to define and show how they do—or do not—relate. The
number of terms could have been far higher—it seems that each one we picked led us to two or
more terms that needed to be included. However, we strove to keep it reasonably compact, though
we welcome any additions, deletions, corrections, or elaborations.

NOTE: The definitions were drawn from many sources. However, in almost all cases the defini-
tions were modified or shortened to better fit the limitations of the table. In those cases where a
suitable definition was not available, we created one based on our overall Agile research.

In all cases, the authors encourage readers to read the original source definitions if they have any
questions about the term or concept. In addition, we welcome and encourage any feedback

4.1.1 Agile World and Traditional World Terms

We limited our selection to 25 terms or concepts from each world. Arguments can be made for or
against including each term, and even stronger arguments can be made for including more, but we
had to bound this paper. Readers will also see that some terms have escaped from their process
context and have become general, like Kleenex—a brand name that has come to signify an object
produced by many manufacturers. These terms are provided in that spirit, not necessarily in the
context of the process.

29 Even “vacation” can lead to misunderstandings as in England it would be called a “holiday” whereas in the U.S.

a “holiday” generally refers to a specific holiday like Christmas, the Fourth of July, etc.

CMU/SEI-2013-TN-021 | 22

The terms and concepts are listed alphabetically, and are most easily read by going down each
column rather than left-to-right on each row. There is not an intentional relationship between Ag-
ile terms and Traditional terms that line up across from each other in the tables; each term was
selected based on its own significance.

Agile World Traditional World

Agile Ball Park Estimate

Backlog Bar Chart (or Gantt Chart)

Burn-Down Chart Critical Path

Complexity Point Derived Requirements

Continuous Integration Earned Value Management

Done Entry Criteria/Exit Criteria

Epic Function Point

eXtreme Programming (XP) Increment

Feature Inspection

Five Levels of Agile Planning Integrated Master Plan/Integrated Master Schedule

INVEST Integrated Product Team

Pair Programming Key Performance Parameters

Planning Poker Lightweight Process

Product Owner Milestone A/Milestone B/Milestone C

Refactoring Oversight

Release Peer Review

Retrospective Performance Measurement Baseline

Roadmap Preplanned Product Improvement (P3I)

Scrum PERT (Program Evaluation and Review Technique)

Sprint (or Iteration) Progressive Elaboration

Story (or User Story) Prototype

Story Board Requirements Scrub

Technical Debt System Specification

Velocity Traditional Waterfall Methods

Vision Work Breakdown Structure

CMU/SEI-2013-TN-021 | 23

Agile Terms: Agile

Definition30,31 Is there an equivalent in the Traditional World?

As we use the term in this technical note,
it is the group of various software devel-
opment methodologies that emphasize
most or all of these points:

• requirements evolution
• iterative development
• continuous test and integration
• frequent progress demonstra-

tions
• frequent delivery of working code
• on-going, direct communication

between the customer and de-
veloper

• self-organizing, cross-functional
teams

• frequent retrospectives promot-
ing continuous improvement

As we’ve tried to show, many Agile concepts are not new to the Tradi-
tional World – it’s a matter of emphasis and context.

However, perhaps the greatest difference between the Agile World and
the Traditional World is Agile’s explicit acknowledgement and support
for evolving requirements.

How is it used in Agile? Are there any related terms or concepts?32

 Fake Agile (Frag-
ile)

A project that declares itself Agile but doesn’t em-
brace Agile; such a group typically dictates its own
delivery schedule and stops writing documentation
but doesn’t adopt test-driven development or any
other practice they dislike.

Hitting the Scrum
Wall

An initial improvement in productivity and customer
satisfaction after adopting Scrum management
techniques that comes to an abrupt end because
other Agile practices were not adopted.

ScrumBut When a project claims to follow Scrum but misses or
avoids important practices as in

• “We do Scrum – but we don’t have a prod-
uct owner”

• “We do Scrum – but the project manager
allocates tasks.”

30 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

31 Term and definition(s) adapted whole or in part from http://www.accurev.com/wiki/agile-glosssary

32 All three terms and definition(s) adapted whole or in part from http://www.develop.com/agiledemystified

CMU/SEI-2013-TN-021 | 24

Agile Terms: Backlog

Definition33 Is there an equivalent in the Traditional World?

The backlog is a prioritized list of stories
(or user stories) and defects ordered from
the highest priority to the lowest.

Backlogs were developed in the context of
Scrum, but are now used widely in many
Agile methods.

Backlogs include both functional and non-
functional stories (or user stories) as well
as technical team-generated stories.
There are three types of backlogs.

• The product backlog contains all
of the requirements and is the
highest level.

• One level down is one or more
release backlog(s), which contain
the product backlog requirements
as allocated into releases.

• Two levels down is one or more
sprint (or iteration) backlog(s),
which contain the release back-
log requirements as allocated in-
to the sprints.

• In addition, some Agile teams
use the concept of a daily back-
log, which are composed of the
sprint or iteration backlog re-
quirements as they are allocated
into daily work assignments.

This term is a frequent source of confusion as it has fundamentally dif-
ferent meanings and connotations.

In the Traditional World, having a backlog is not desirable because the
backlog is what the program expected to do but didn’t or couldn’t per-
form. In the Traditional World, the backlog of unfinished or deferred
work usually falls out of the work baseline.

However, it’s true that in both worlds not all work planned is accom-
plished. In Agile, the unfinished work from a sprint (or iteration) is re-
turned to the release backlog or the product backlog where it is priori-
tized and included in planning for future work.

How is it used in Agile? Are there any related terms or concepts?

The concept of backlogs is a cornerstone
of Agile and is used during each of the five
levels of Agile planning:

• Vision
• Roadmap
• Release
• Sprint (or Iteration)
• Daily Work

Backlog34
(Traditional World
definition)

Known work input that is beyond an organization’s
capacity or capability for any given period of time.

33 Term and definition(s) adapted whole or in part from http://www.accurev.com/wiki/agile-glosssary

34 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 25

Agile Terms: Burn-Down Chart

Definition35 Is there an equivalent in the Traditional World?

A visual tool displaying progress via a
simple line chart representing remaining
work (vertical axis) over time (horizontal
axis).

There isn’t a direct peer in the Traditional World for the Agile burn down
chart. However, both the Traditional World and the Agile World have
charts with the same fundamental purpose—to show progress against
time in an easily understood graphic.

In Agile, burn-down charts (tracking the work completed) and burn-up
charts (tracking the work remaining) in essence capture the same type
of information.
These same charts also characterize the information in another manner
as the team’s velocity refers to the slope of the line on the chart (this is
not explicitly captured in most EVM processes).

How is it used in Agile? Are there any related terms or concepts?

As a visual display of progress, burndown
charts are normally used at a release level
as well as the sprint (or Iteration) levels.

Burn-Up Chart (or
Graph) 36

A visual tool displaying progress via a simple line
chart representing work accomplished (vertical
axis) over time (horizontal axis).

Burn-up charts are also normally used at a re-
lease level as well as the sprint (or iteration) lev-
els.

Agile burn-up charts are conceptually equivalent
to the Traditional World’s earned value accumu-
lated at a specific date [Cabri 2006].

Earned Value Man-
agement (EVM) 37
(Traditional World
definition)

A method combining scope, schedule, and re-
source data into a measure of performance and
progress by comparing what was budgeted for a
task (time and resources) against what the task
actually required (time and resources).

A key criterion in EVM is making the “percent
complete” calculations, which is related to the
Agile concept of “done.” It is also related to
EVM’s schedule performance index (SPI) and
budgeted cost of work scheduled (BCWS) which
is also known as planned value.

35 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-

tools/agile-resources/vocabulary.aspx

36 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

37 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

CMU/SEI-2013-TN-021 | 26

Agile Terms: Complexity Point

Definition Is there an equivalent in the Traditional World?

Complexity points are units of measure
used to estimate development work in
terms of complexity, but not effort—effort
is measured by story points.

No direct peer per se; however the Traditional World’s use of function
points and function point analysis attempts to address similar issues
(though the use and application of function points is not universally or
consistently used).

How is it used in Agile? Are there any related terms or concepts?

Complexity Points are most often used
during planning at the release level as well
as the sprint (or iteration) levels.

Story Points38 According to Cohn, “story points are a unit of meas-
ure for expressing the overall size of a user story,
feature, or other piece of work…The number of story
points associated with a story represents the overall
size of the story. There is no set formula for defin-
ing the size of a story. Rather a story-point estimate
is an amalgamation of the amount of effort involved
in developing the feature, the complexity of develop-
ing it, the risk inherent in it and so on” [Cohn 2006].

38 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

CMU/SEI-2013-TN-021 | 27

Agile Terms: Continuous Integration

Definition39 Is there an equivalent in the Traditional World?

Continuously integrating new development
code into the existing codebase, which
ensures that the code repository always
reflects the latest working build of the
software.

Continuous integration helps identify and
resolve issues more quickly than “end of
build” integration.

No direct peer per se; however continuous integration as defined in
Agile is practiced in some Traditional World projects.

That being said, there is significant similarity between the Traditional
World concepts of automated verification system and the automated
acceptance test. In some traditional projects, unit and integration test
cases are defined and built as part of the design phase in order to en-
sure the developers fully understand the requirements.

However, in a strict interpretation the Traditional World’s automated
verification system isn’t necessarily tied to acceptance, and does allow
for the need for human intervention. Additionally, the Agile automated
acceptance test is often incorporated into the daily work.

In addition, some Agile practices call for the automated acceptance
tests to be built prior to coding as a mechanism to ensure the develop-
ers fully understand the customer requirements.

How is it used in Agile? Are there any related terms or concepts?

Continuous integration is most often used
during daily work or at a sprint (or itera-
tion) level.

Automated Ac-
ceptance Tests40

Tests written by the product owner which are run
automatically against software and systems; they
form part of the program specification.

Test Driven Devel-
opment (TDD) 41

A technique where a test case is written before
coding is started for a desired improvement or new
function, code is written until it passes the test, the
code is refactored to acceptable standards.

Automated Verifi-
cation System42
(Traditional World
definition)

A software tool that accepts as input a computer
program and a representation of its specification
and produces, possibly with human help, a proof or
disproof of the correctness of the program

Multi-Stage
Continuous
Integration43

Multi-stage continuous integration (CI); each team
does CI on their branch such that if a problem oc-
curs only that team is affected – not the entire pro-
ject.

39 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

40 Terms and definition(s) adapted whole or in part from http://www.develop.com/agiledemystified

41 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

42 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

43 Term and definition(s) adapted whole or in part from http://www.accurev.com/wiki/agile-glosssary

CMU/SEI-2013-TN-021 | 28

Agile Terms: Done

Definition44 Is there an equivalent in the Traditional World?

A story (or user story) is done when:
• All code is checked in
• All developer tests pass
• All acceptance tests pass
• Help text is written
• Product Owner accepted

A sprint (or Iteration) is done when:
• Product backup is complete
• Performance tested
• Defects fixed or postponed

A release is done when:
• Stress tested
• Performance tuned
• Security validation passes
• Disaster recovery plan tested
• Required documentation is com-

plete

There is no direct peer term per se in the Traditional World, though
there is the peer concept of software being ready for acceptance testing
or production.

How is it used in Agile? Are there any related terms or concepts?

Done is used to express when work is
complete at some level, which can vary.

Done is often defined uniquely to a team,
and care must be taken to ensure all
stakeholders share the same interpreta-
tion. In this manner it is very similar to
confusion over the terms “complete” or
“finished” in the Traditional World, where
various stakeholders (developers, testers,
users, etc.) frequently have different defi-
nitions of the terms.

Done Done Done done means that all of the tasks needed to
create the final, releasable product have been
completed.

Shrink-wrapped
(Traditional World
definition)

Software that is ready to deliver; i.e., if it could be
purchased at a local store as a consumer product it
would be wrapped in cellophane or shrink wrap-
ping.

Acceptance Crite-
ria45

Those criteria by which a work item (user story) is
judged successful or not; usually "all or nothing"—it
is “done” or it is “not done.”

Acceptance Crite-
ria46
(Traditional World
definition)

The criteria that a system or component must satis-
fy in order to be accepted by a user, customer, or
other authorized entity.

44 Terms and definition(s) adapted whole or in part from http://www.rallydev.com/help/definition-done

45 Term and definition(s) adapted whole or in part from http://www.accurev.com/wiki/agile-glosssary

46 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

CMU/SEI-2013-TN-021 | 29

Agile Terms: Epic or Epic Stories

Definition Is there an equivalent in the Traditional World?

A connected or bundled set of stories that
result in a definable (in the case of soft-
ware, desirable) capability or outcome. An
epic is a large user story. It is possible to
break up an epic into several user sto-
ries.47

This is most similar to a system specification or top-level requirements
(TLRs). Because Epics can represent an end-to-end capability, they
are also similar to mission threads

How is it used in Agile? Are there any related terms or concepts?

Epics are most often used during planning
at the vision and or roadmap level.

Story (or User
Story) 48

Often written on 3”x5” cards, a story (or user story)
is a high-level requirement definition written in eve-
ryday or business language

Product Backlog49 The repository of requirements maintained by the
product owner; typically high level requirements with
high level estimates, and with the requirements in
priority order.

Mission Threads
(Traditional World
definition)

A sequence of end-to-end activities and events be-
ginning with an opportunity to detect a trigger of an
event of interest and ending with an assessment of
the effectiveness of any actions initiated in response
to the event of interest.

47 Term and definition(s) adapted whole or in part from

http://www.targetprocess.com/LearnAgile/AgileGlossary/ThemeEpic.aspx

48 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

49 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

CMU/SEI-2013-TN-021 | 30

Agile Terms: eXtreme Programming (XP)

Definition50 Is there an equivalent in the Traditional World?

XP is a discipline of software development
based on values of communication, sim-
plicity, feedback, courage, and respect.

XP consists of the following core practic-
es; planning poker, on-site customer,
small releases, metaphor, simple design,
test-driven development, refactoring, pair
programming, collective ownership, con-
tinuous integration, coding standards, and
sustainable pace.

There is not a peer process to XP in the Traditional World; in fact there
are Agile proponents that feel XP is the antithesis of the Traditional
World.

In extreme programming, every contributor to the project is an integral
part of the team, and the team forms around a business representative
called “the customer,” who sits with the team and works with them dai-
ly.51

How is it used in Agile? Are there any related terms or concepts?

XP is one of the major forms of Agile, and
can be used during each of the five levels
of Agile planning:

• Vision
• Roadmap
• Release
• Sprint (or Iteration)
• Daily Work

Planning Poker52 A consensus-based technique used to estimate how
long a certain amount of work will take to complete.

Refactoring53 Modifying/revising code to improve performance,
efficiency, readability, or simplicity without affecting
functionality; generally considered part of the normal
development process and it improves longevity,
adaptability, and maintainability over time.

Pair Program-
ming54

Two developers (sometimes referred to as the “driv-
er” for the person actually coding and the “observ-
er”) working side-by-side to create a single feature;
it provides real-time code review, allows one devel-
oper to think ahead while the other thinks about the
work at hand, and supports cross-training.

The concept can also extend to pair designing and
pair unit testing. It provides real time peer reviews.

50 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com and from http://xprogramming.com/book/whatisxp/

51 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com and from http://xprogramming.com/book/whatisxp/

52 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

53 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

54 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

CMU/SEI-2013-TN-021 | 31

Agile Terms: Feature

Definition55 Is there an equivalent in the Traditional World?

A customer-understandable, customer-
valued piece of functionality that serves as
a building block for prioritization, planning,
estimation, and reporting.

While the DAU definition of a feature is much simpler (a distinguishing
system characteristic), the underlying meaning is essentially the same
in both the Traditional World and the Agile World.

How is it used in Agile? Are there any related terms or concepts?

The concept of a feature is used during
each of the five levels of Agile planning:

• Vision
• Roadmap
• Release
• Sprint (or Iteration)
• Daily Work

Minimally-
Marketable
Feature (MMF) 56

A smallest element of a marketable or operationally
useful feature; it is marketable, or operationally
useful because when it is released as part of a
product, users would use (or buy) the feature.

Attribute57
(Traditional World
definition)

A property associated with a set of real or abstract
things that is some characteristic of interest.

Feature-Based
Planning58

An approach where features and scope take priority
over date; plans are created by estimating the
amount of time needed to build a set of features or
a defined amount of scope.

Feature-Driven
Development
(FDD)59

FDD utilizes an incremental, model-driven ap-
proach based on five key activities:

• Define the overall model
• Build the feature list
• Plan by feature
• Design by feature
• Develop by feature

55 Term and definition(s) adapted whole or in part from Agile to waterfall Dictionary; Mike Griffiths;

http://www.pmhut.com/agile-to-waterfall-dictionary

56 Term and definition(s) adapted whole or in part from
http://www.agilebok.org/index.php?title=Minimally_Marketable_Feature_%28MMF%29

57 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

58 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

59 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

CMU/SEI-2013-TN-021 | 32

Agile Terms: Five Levels of Agile Planning

Definition60 Is there an equivalent in the Traditional World?

The five levels of Agile planning are:
• Vision - The highest level in agile

planning, the vision is strategic in
nature and is infrequently
changed

• Roadmap - The roadmap distills
the vision into a high level plan
that outlines work spanning one
or more releases; requirements
are grouped into prioritized
themes, each with an execution
estimate.

• Release – A release is a plan-
ning segment of prioritized re-
quirements, along with execution
estimates

• Sprint (or Iteration) – An iteration
is a predefined, time-boxed and
recurring period of time in which
working software is created.

• Daily Work – a brief, daily com-
munication and planning forum
where the development team and
other stakeholders evaluate the
health and progress of the itera-
tion/sprint.

The Traditional World also has different levels of planning (PMBOK’s
planning process, for example) but does not structure them in the same
framework. Visions, roadmaps, and release plans are essentially the
same as in the Traditional World; however their representations and
scope may vary from an Agile approach.

The main distinction between the two approaches is that Agile planning
is based on the assumption that change is inevitable and must be ac-
commodated, while traditional methods are based on the assumption
that deviations from a plan are problems that must be actively avoided.

How is it used in Agile? Are there any related terms or concepts?

The five levels are used throughout the life
cycle.

Planning Process-
es61
(Traditional World
definition)

Those processes performed to define and mature
the project scope, develop the project management
plan, and identify and schedule the project activities
that occur within the project.

60 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

61 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

CMU/SEI-2013-TN-021 | 33

Agile Terms: INVEST

Definition62 Is there an equivalent in the Traditional World?

From eXtreme Programing Explored,
INVEST is an acronym for a set of rules to
create a story (or user story)

• Independent
• Negotiable
• Valuable
• Estimable
• Small
• Testable

There is no direct peer for this acronym in the Traditional World; how-
ever in the Traditional World requirements are always seen as needing
to be:

• Necessary
• Prioritized
• Unambiguous
• Verifiable
• Complete
• Consistent
• Traceable

How is it used in Agile? Are there any related terms or concepts?

As stated in the definition, INVEST is used
during the planning stages.

The INVEST concept can be used during
each of the five levels of Agile planning:

• Vision
• Roadmap
• Release
• Sprint (or Iteration)
• Daily Work

Story (or user
story)63

Often written on 3”x5” cards, a story (or user story)
is a high-level requirement definition written in eve-
ryday or business language.

62 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

63 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

CMU/SEI-2013-TN-021 | 34

Agile Terms: Pair Programming

Definition64 Is there an equivalent in the Traditional World?

Two developers (sometimes referred to as
the “driver” for the person actually coding
and the “observer”) working side-by-side
to create a single feature; it provides real-
time code review, allows one developer to
think ahead while the other thinks about
the work at hand, and supports cross-
training.

The concept can also extend to pair de-
signing and pair unit testing. It provides
real time peer reviews.

There is not a peer in the Traditional World; however the concept of
peer inspections captures an equivalent quality mechanism to that of
paired programming.

How is it used in Agile? Are there any related terms or concepts?

Used during product development (daily
work). While reviewing, the observer also
considers the strategic direction of the
work, coming up with ideas for improve-
ments and likely future problems to ad-
dress.

This frees the driver to focus all of his/her
attention on the "tactical" aspects of com-
pleting the current task, using the observ-
er as a safety net and guide.65

eXtreme Pro-
gramming 66

XP is a discipline of software development based
on values of communication, simplicity, feedback,
courage, and respect.

XP consists of the following core practices; plan-
ning poker, on-site customer, small releases, meta-
phor, simple design, test-driven development, re-
factoring, pair programming, collective ownership,
continuous integration, coding standards, and sus-
tainable pace.

64 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

65 Term and definition(s) adapted whole or in part from http://en.wikipedia.org/wiki/Pair_programming

66 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com and from http://xprogramming.com/book/whatisxp/

CMU/SEI-2013-TN-021 | 35

Agile Terms: Planning Poker

Definition67 Is there an equivalent in the Traditional World?

A consensus-based estimating technique
using cards marked with one number from
a modified Fibonacci sequence (0,1/2, 1,
2, 3, 5, 8, 13, 20, 40, 100, and optionally ?
and ∞); the rules are:

• The team selects a requirement
as the baseline; this can have
any value but is notionally as-
signed a value of “2.”

• The team selects a new require-
ment, and team members dis-
cuss and clarify assumptions and
risks.

• Team members select a card
whose value they feel reflects the
complexity or risk of the new re-
quirement as compared to the
baseline (i.e., a “1” is half as diffi-
cult and a “20” is an order of
magnitude more difficult).

• The team members reveal their
cards simultaneously by turning
them over.

• The people with the high and/or
low estimates justify their selec-
tion.

• Each person then selects a card
again, and the process repeats
until there is a consensus.

• The process repeats until all the
requirements have been scored.

Similar to wide-band delphi (described below)

How is it used in Agile? Are there any related terms or concepts?

Planning poker is used during release and
sprint (or iteration) planning.

Wide-Band Del-
phi68
(Traditional World
definition)

A group estimation technique when there are a
many unknowns; steps include:

• Describe what is being estimated.
• Ask individuals to privately make their

own estimates using their best judgment.
• Present the estimates and discuss, usu-

ally begun by asking the high/low esti-
mates to explain their thinking.

• Repeat these steps (with anonymity
dropped) until the estimates converge.

67 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

68 Terms and definition(s) adapted whole or in part from http://leansoftwareengineering.com/wideband-delphi

CMU/SEI-2013-TN-021 | 36

Agile Terms: Product Owner

Definition69,70 Is there an equivalent in the Traditional World?

The “voice of the customer,” accountable
for ensuring business value is delivered by
creating customer-centric items (typically
stories (or user stories), prioritizing them,
and maintaining them in the product back-
log.

In scrum, the product owner is the sole
person responsible for managing the
product backlog; they:

• Define the product backlog items
• Prioritize the product backlog to

reflect goals and missions
• Keep the product backlog visible

to all
• Define the sprint backlog items
• Ensure the developers fully un-

derstand the backlog items

However, the product owner does not
specifically have to be one person; this
role could be carried out by one person or
a group could own it. The main point is
that that there is “one voice” for the cus-
tomer.

Similar in concept to the Traditional World’s voice of the customer, but
with the significant difference that in agile the product owner is much
more involved in the software development daily operations as well as
release and sprint planning, prioritization, etc. and thus has more influ-
ence on the developer’s decisions making process.

In the Traditional World, the actual implementation of the product owner
role is shared among many different stakeholders such as the end user,
systems engineer, product architect, solution analysis, program manag-
er, etc.

In theory, sharing this role among so many stakeholders should ensure
that at least one of the product owner(s) is always available to support
the software development activities. However, that is frequently not the
case because the role is not explicit.

Also, with the role split among many different stakeholders there are
sometimes conflicting perspectives which can hamper or delay activi-
ties.

How is it used in Agile? Are there any related terms or concepts?

The product owner is involved in all stages
of an Agile project.

In fact the demands placed on the product
owner (time commitment, knowledge of
the domain, and knowledge of Agile de-
velopment methods) are one of the key
stumbling blocks in the Traditional World’s
Agile adoption.

Voice of the
Customer
(Traditional World
definition)

A survey technique to capture a detailed set of
customer needs and desires using the customer’s
language, translating these into technical re-
quirements, and putting them in priority order.

HOWEVER—the Traditional voice of the custom-
er is a survey technique, where the Agile product
owner is an active role and responsibility.

69 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-

tools/agile-resources/vocabulary.aspx

70 Terms and definition(s) adapted whole or in part from The Scrum Guide – The Definitive Guide to Scrum: Rules
of the Game; Schwaber and Sutherland, scruminc

CMU/SEI-2013-TN-021 | 37

Agile Terms: Refactoring

Definition71 Is there an equivalent in the Traditional World?

Modifying/revising code in to improve per-
formance, efficiency, readability, or sim-
plicity without affecting functionality; gen-
erally considered part of the normal
development process and it improves lon-
gevity, adaptability, and maintainability
over time.

There is not a direct peer for this in the Traditional World, although re-
factoring can be argued to be a general software development ap-
proach that has simply been most popularized by Agile.

There are also similarities with elements of the Traditional World’s soft-
ware redesign or reengineering. These processes result in the design
and implementation of a new overall structure without changing its ex-
ternal behavior, and share the refactoring goal of correcting deficiencies
in the software design and supporting future enhancements.

However, redesign and reengineering can also include adopting a new
programming paradigm (such as a transition from unstructured to struc-
tured programming or to object-oriented programming), which is well
beyond the normal use of Agile refactoring.

How is it used in Agile? Are there any related terms or concepts?

Refactoring was popularized as a practice
in extreme programming, but was used
prior to XP and is now used by most Agile
methods as a normal part of the develop-
ment process

eXtreme Pro-
gramming 72

XP is a discipline of software development based
on values of communication, simplicity, feedback,
courage, and respect.

XP consists of the following core practices: plan-
ning poker, on-site customer, small releases, meta-
phor, simple design, test-driven development, re-
factoring, pair programming, collective ownership,
continuous integration, coding standards, and sus-
tainable pace.

Simple Design73 To paraphrase the poet Wallace Stevens, simple
design is "the art of what suffices."

Simple design means coding for today's specified
requirements, and no more.

71 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

72 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com and from http://xprogramming.com/book/whatisxp/

73 Term and definition(s) adapted whole or in part http://www.versionone.com/Agile101/Simple_Design.asp

CMU/SEI-2013-TN-021 | 38

Agile Terms: Release

Definition74 Is there an equivalent in the Traditional World?

The third of the five levels of Agile plan-
ning:

• Vision - The highest level in agile
planning, the vision is strategic in
nature and is infrequently
changed.

• Roadmap - The roadmap distills
the vision into a high level plan
that outlines work spanning one
or more releases; requirements
are grouped into prioritized
themes, each with an execution
estimate.

• Release – A release is a plan-
ning segment of prioritized re-
quirements, along with execution
estimates.

• Sprint (or iteration) – An iteration
is a predefined, time-boxed and
recurring period of time in which
working software is created.

• Daily Work – a brief, daily com-
munication and planning forum
where the development team and
other stakeholders evaluate the
health and progress of the itera-
tion/sprint.

This is another term which can cause confusion. In Agile, a release is
part of the planning process. However, at the end of each release the
development contractor will deliver some element of a militarily useful
capability to the government. (This does not mean that the capability is
fielded at this point, but it does mean that it could be fielded.)

What this means is that a release in Agile often does result in a deliver-
able—which in the Traditional World is often called a “release” (see the
definition below).

How is it used in Agile? Are there any related terms or concepts?

Planning Release75
(Traditional World
definition)

A delivered version of an application which may
include all or part of an application.

74 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

75 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

CMU/SEI-2013-TN-021 | 39

Agile Terms: Retrospective

Definition76 Is there an equivalent in the Traditional World?

A team meeting at the end of every itera-
tion to review lessons learned and to dis-
cuss how the team can be more efficient
in the future.

The closest peer in the Traditional World is a hot wash (see below), but
in Agile retrospectives are much more integrated into the project’s
rhythm.

The Traditional World also performs project post-mortems which share
many of the same goals but are usually only performed once at the end
of a project so the lessons learned can only improve future projects.
Retrospectives, on the other hand, are designed to improve the current
project as well as future projects.

How is it used in Agile? Are there any related terms or concepts?

The retrospective is an integral part of
Agile planning and process/product im-
provement; the most common examples
are sprint (or iteration) retrospectives, and
release retrospectives.

Hot Wash77
(Traditional World
definition)

Discussions and performance evaluations follow-
ing an exercise, training session, or event to iden-
tify strengths, weaknesses and lessons learned;
normally includes all the parties that participated
in the exercise or event.

76 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

77 Terms and definition(s) adapted whole or in part from http://www.develop.com/agiledemystified

CMU/SEI-2013-TN-021 | 40

Agile Terms: Roadmap

Definition78 Is there an equivalent in the Traditional World?

The second of the five levels of Agile
planning:

• Vision - The highest level in agile
planning, the vision is strategic in
nature and is infrequently
changed.

• Roadmap - The roadmap distills
the vision into a high level plan
that outlines work spanning one
or more releases; requirements
are grouped into prioritized
themes, each with an execution
estimate.

• Release – A release is a plan-
ning segment of prioritized re-
quirements, along with execution
estimates.

• Sprint (or iteration) – An iteration
is a predefined, time-boxed and
recurring period of time in which
working software is created.

• Daily Work – a brief, daily com-
munication and planning forum
where the development team and
other stakeholders evaluate the
health and progress of the itera-
tion/sprint.

While elements of the roadmap could also comprise parts of the Tradi-
tional World’s project charter, it is most like the Traditional World’s ac-
quisition program baseline (see below).

It is also similar to the Traditional World’s integrated master plan (IMP)
or master phasing schedule.

How is it used in Agile? Are there any related terms or concepts?

Planning Acquisition Pro-
gram Base-
line (APB) 79
(Traditional World
definition)

Baseline reflecting threshold and objective values
for the cost, schedule, and performance attributes
that describe the program over its life cycle:

• Life cycle cost estimate (LCCE)
• Schedule dates including key activities

such as milestones and the initial opera-
tional capability (IOC)

• Performance attributes reflecting the op-
erational performance required for the
fielded system

78 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

79 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 41

Agile Terms: Scrum

Definition80 Is there an equivalent in the Traditional World?

A process framework of team members
and their associated roles (product own-
ers, Scrum masters and team members
such as developers, testers, etc.) who
collaboratively define product and sprint
backlogs that are executed in short, time-
boxed sprints (or iterations).

At the end of each sprint, a working in-
crement of the software is delivered or
demonstrated to the product owner, and
the entire process repeats itself.

There isn’t a direct peer in the Traditional World. There are many ex-
amples in the Traditional World that contain the iterative and incremen-
tal aspects of Scrum (particularly spiral development or the IBM Ration-
al Unified Process® or RUP ®), but they lack key elements of a Scrum:

• Daily close collaboration on a working level
• Short iterations
• Planning cycles are done at the start of each new body of work

vs. all planning done up front before any body of work begins

Some elements of Scrum are also in the Traditional World such as de-
sign reviews and technical interchange meetings (TIMs), but these are
usually on a “grander scale” than Scrum demonstrations.

How is it used in Agile? Are there any related terms or concepts?

Management, planning Scrum Master81 The Scrum master is not the development team
leader per se – they buffer the team from distracting
influences while they ensure the Scrum process is
used as intended. The Scrum master also removes
roadblocks, handles the paperwork, and generates
the burn-down chart (metrics).

Scrum of
Scrums82
(only used on
larger teams)

A daily meeting that occurs after individual team’s
daily stand up, it allows multiple Scrum teams to
stay synchronized and understand the flow and
challenges of the other teams.

Each Scrum master addresses these questions:

• What did my team complete?
• What is my team working on next?
• What barriers/issues are my team facing?

ScrumBut83 A project that claims to follow Scrum but doesn’t:
• “We do Scrum—but we don’t have a prod-

uct owner”
• “We do Scrum—but the project manager

allocates tasks.”

80 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

81 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

82 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

83 Terms and definition(s) adapted whole or in part from http://www.develop.com/agiledemystified

CMU/SEI-2013-TN-021 | 42

Agile Terms: Sprint (or Iteration)

Definition84 Is there an equivalent in the Traditional World?

A predefined, time-boxed, and recurring
block of time in which working software is
created— most commonly two, four, or six
weeks long.

“Sprint” and “iteration” are effectively in-
terchangeable, with sprint used by teams
implementing Scrum.

Activity or work package (see below) may be the closest peer in the
Traditional World as the concept of a basic schedule building block is
used in both Agile and the Traditional World.

However, the principal difference is that in Agile, the planning is taken
“to the edge”—it is done by the people most affected by the planning,
who are best suited to make realistic choices, and who have a vested
interest in ensuring the work can be accomplished.

How is it used in Agile? Are there any related terms or concepts?

Sprints (or iterations) are more than just
the basic building blocks of Agile schedul-
ing and product development; they repre-
sent a deliberate approach to planning
and executing work in manageable
“chunks” with known goals, known re-
sources, and with the scope adjusted to fit
the known schedule.

Sprint (or Itera-
tion) Backlog85

The subset of stories (or user stories) and/or fea-
tures from the product backlog planned to be
completed in a specific sprint (or iteration). It re-
flects the priority and order of the release plan
and product roadmap.

Sprint (or Itera-
tion) Plan86

The detailed execution plan for a given (usually
current) sprint (or Iteration); it defines the iteration
goals and commitments by specifying the user
stories, work tasks, priorities and team member
work assignments required to complete the itera-
tion. The sprint plan is normally produced by the
entire development

it d i th i t l i i
Work Package87
(Traditional World
definition)

A work package is a deliverable or component at
the lowest level of the work breakdown structure;
it is a task, activity or grouping of work at the low-
est level where work is planned, progress is
measured, and earned value is computed.

Activity88
(Traditional World
definition)

A task or measurable amount of work to complete
a job or part of a project.

84 Term and definition(s) adapted whole or in part from Agile to Waterfall Dictionary; Mike Griffiths;

http://www.pmhut.com/agile-to-waterfall-dictionary

85 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

86 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

87 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

88 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 43

Agile Terms: Story (or User Story)

Definition89 Is there an equivalent in the Traditional World?

Often written on 3”x 5” cards, a story (or
user story) is a high-level requirement
definition written in everyday or business
language; it is a communication tool writ-
ten by or for the customers to guide de-
velopers though it can also be written by
developers to express non-functional re-
quirements (security, performance, quali-
ty, etc.).

Stories (or user stories) are not vehicles to
capture complex system requirements on
their own. Rather, full system require-
ments consist of the body of stories (or
user stories).

An epic is a large story (or user story) that
will eventually be broken down into small-
er stories (or user stories) that will be cap-
tured in the product backlog.

Stories (or user stories) are most similar to requirements in the Tradi-
tional World.

Stories (or user stories) in Agile describe the same thing as require-
ments in the Traditional World—they capture what the system must do.

When combined together in the Agile product backlog, the stories (or
user stories) form a comprehensive set of what the system “must do.”

How is it used in Agile? Are there any related terms or concepts?

Stories (or User Stories) are used in all
levels of Agile planning and execution:

• Vision
• Roadmap
• Release
• Sprint (or Iteration)
• Daily Work

Requirement90
(Traditional World
definition)

A condition or capability needed by a user to
solve a problem or achieve an objective.

Story Points91 According to Cohn, “story points are a unit of
measure for expressing the overall size of a user
story, feature, or other piece of work…The num-
ber of story points associated with a story repre-
sents the overall size of the story. There is no set
formula for defining the size of a story. Rather a
story-point estimate is an amalgamation of the
amount of effort involved in developing the fea-
ture, the complexity of developing it, the risk in-
herent in it and so on” [Cohn 2006].

89 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-

tools/agile-resources/vocabulary.aspx

90 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

91 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

CMU/SEI-2013-TN-021 | 44

Agile Terms: Story Board

Definition Is there an equivalent in the Traditional World?

A wall chart (or digital equivalent) with
markers (cards, sticky notes, etc.) for each
task in a sprint or iteration; the board is
divided into “to do”, “in progress”, “done”,
etc. and the movement of the markers
across the board indicates progress.

One goal of the story board is also to rec-
ognize the order and the dependencies of
the stories in representing end-to-end
functionality for the users.

Similar to story maps92, which are a visual
technique to prioritize stories (or user sto-
ries) by creating a “map” of users, their
activities, and the stories (or user stories)
needed to implement the functionality
needed

There are several similar concepts in the Traditional World. For exam-
ple, some Traditional World war rooms have had the same goal as an
Agile story board.

The Traditional World’s project management dashboard is also similar
in concept as it is a simple-to-read graphical presentation of the current
status and in some cases historical trends of performance; one promi-
nent example is the federal government’s IT dashboard
(http://www.itdashboard.gov/).

Also, the IMS (integrated master schedule) allows for teams to identify
tasks that have not started (to do), in progress (in progress), and com-
pleted (done). However, the story board is usually much more detail
than what is in an IMS.

How is it used in Agile? Are there any related terms or concepts?

A Story Board could be used in all levels
of Agile planning and execution:

• Vision
• Roadmap
• Release
• Sprint (or Iteration)
• Daily Work

Story Maps93 A visual technique to prioritize stories (or user
stories) by creating a “map” of users, their activi-
ties, and the stories (or user stories) needed to
implement the functionality needed.

War Room94
(Traditional World
definition)

A room used for project conferences and plan-
ning, often displaying charts of cost, schedule
status, and other key project data.

Information
Radiator95
(Or Task Board)

A display posted in a public place showing read-
ers relevant information; it should be:

• easily visible to casual but interested
readers

• able to be understood at a glance
• kept current

92 Term and definition(s) adapted whole or in part from http://www.agilelearninglabs.com/modules/story-mapping/

93 Term and definition(s) adapted whole or in part from http://www.agilelearninglabs.com/modules/story-mapping/

94 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

95 Term and definition(s) adapted whole or in part from http://alistair.cockburn.us/Information+radiator

CMU/SEI-2013-TN-021 | 45

Agile Terms: Technical Debt

Definition96 Is there an equivalent in the Traditional World?

Technical debt includes those internal
things (such as architectural elements,
strategic development tasks such as
common methods, etc.) that you choose
not to do now, but which will impede future
development if left undone. This includes
deferred refactoring.

Technical debt doesn't include deferred
functionality, except possibly in edge cas-
es where delivered functionality is "good
enough" for the customer, but doesn't
satisfy some standard (e.g., a UI element
that isn't fully compliant with some UI
standard)

As we write this in 2012, technical debt is principally used in Agile, and
is not frequently used in the Traditional World.

However, the concept has been understood in the Traditional World for
many years. In 1980 Manny Lehman wrote The Law of Increasing
Complexity [Lehman 1980]:

"As an evolving program is continually changed, its complexity, reflect-
ing deteriorating structure, increases unless work is done to maintain or
reduce it."

The technical debt metaphor was coined by Ward Cunningham in a
1992 Object-Oriented Programming, Systems, Languages and Applica-
tions (OOPSLA) experience report:97

“Shipping first time code is like going into debt. A little debt speeds de-
velopment so long as it is paid back promptly with a rewrite... The dan-
ger occurs when the debt is not repaid. Every minute spent on not-
quite-right code counts as interest on that debt. Entire engineering or-
ganizations can be brought to a standstill under the debt load of an un-
consolidated implementation, object-oriented or otherwise.”

How is it used in Agile? Are there any related terms or concepts?

The concept of technical debt is most ap-
plicable to Agile planning and execution at
the release and sprint (or iteration) level.

Refactoring98 Modifying/revising code in to improve performance,
efficiency, readability, or simplicity without affecting
functionality; generally considered part of the nor-
mal development process and it improves longevity,
adaptability, and maintainability over time.

96 Terms and definition(s) adapted whole or in part from http://c2.com/cgi/wiki?TechnicalDebt

97 http://c2.com/doc/oopsla92.html

98 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

CMU/SEI-2013-TN-021 | 46

Agile Terms: Velocity

Definition99 Is there an equivalent in the Traditional World?

The rate at which work is completed, nor-
mally measured by the number of story
points completed within an iteration; it is a
predictive metric used for planning.

This term is not used in the Traditional World, though the concept of
“how much work will be accomplished in how much time” is fundamental
in the Traditional World as it is in Agile. In both worlds, classes of work
are defined, measures to the effort needed to complete that work are
derived, and how much work was accomplished is measured.

There are similarities between velocity and aspects of the Traditional
World’s earned value system, but as with all discussions of software
productivity there are many issues regarding what to measure, how to
measure, who should measure, etc. Velocity also uses story points
which have an inherent level of uncertainty.

Velocity also has similarities with the Traditional World’s schedule per-
formance index (SPI), which is a historical measure of how much work
the team expected to complete and how much work was actually com-
pleted. However, velocity is not “guessed” ahead of time, but is refined
as sprints are completed and becomes a predictor.

How is it used in Agile? Are there any related terms or concepts?

Velocity is most applicable to Agile plan-
ning and execution at the release, sprint
(or iteration), and daily work level.

Cadence Cadence is an efficient and sustainable working
rhythm, incorporating elements such as the daily
work and stand-up meetings, weekly planning ses-
sions and reviews, regular demonstrations and ret-
rospectives, etc.

Sustainable
Pace100

Agile processes promote sustainable development.
The sponsors, developers, and users should be
able to maintain a constant pace indefinitely.

Story Points101 According to Cohn, “story points are a unit of
measure for expressing the overall size of a user
story, feature, or other piece of work…The number
of story points associated with a story represents
the overall size of the story. There is no set formula
for defining the size of a story. Rather a story-point
estimate is an amalgamation of the amount of effort
involved in developing the feature, the complexity of
developing it, the risk inherent in it and so on”
[Cohn 2006].

99 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

100 For the principles behind the Agile Manifesto, see http://agilemanifesto.org/principles.html

101 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

CMU/SEI-2013-TN-021 | 47

Agile Terms: Vision

Definition102 Is there an equivalent in the Traditional World?

The first of the five levels of Agile plan-
ning:

• Vision - The highest level in agile
planning, the vision is strategic in
nature and is infrequently
changed

• Roadmap - The roadmap distills
the vision into a high level plan
that outlines work spanning one
or more releases; requirements
are grouped into prioritized
themes, each with an execution
estimate.

• Release – A release is a plan-
ning segment of prioritized re-
quirements, along with execution
estimates

• Sprint (or Iteration) – An iteration
is a predefined, time-boxed and
recurring period of time in which
working software is created.

• Daily Work – a brief, daily com-
munication and planning forum
where the development team and
other stakeholders evaluate the
health and progress of the itera-
tion/sprint.

This term is also used in Traditional World, though sometimes called the
goal.
The vision would normally be captured in the Traditional World’s project
charter.

How is it used in Agile? Are there any related terms or concepts?

Planning Charter103
(Traditional World
definition)

Provides authority to conduct the program (within
cost, schedule, and performance constraints); as-
signs personnel and resources; defines the PM’s
line of authority and reporting channels.

102 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-

ods; http://www.aspe-sdlc.com

103 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 48

Traditional Terms: Ball Park Estimate

Definition104 Is there an equivalent in the Agile World?

Rough estimate made with some
knowledge and confidence that the esti-
mated figure falls within a reasonable
range of values. (i.e., this estimate is at
least somewhere in the ball park …”). This
is based upon expert judgment gained
from experience.

Also called rough order of magnitude.

Ball park estimates are normally done using analogous estimating (see
below), which uses the experience from previous projects and extrapo-
lates that onto the current project. In agile this technique is call relative
estimation (see below).

In Agile, initial estimates are done using relative estimation with tools
such as planning poker, which could in some sense be thought of as a
very thorough ball park estimate.

How is it used in the Traditional World? Are there any related terms or concepts?

Initial budgeting and planning Relative Estima-
tion105
(Agile World def-
inition)

A technique to assess size and complexity by com-
paring the work under consideration to the size and
complexity of other known requirements and work
items.

Cost Estimate106 A judgment or opinion regarding expected costs
reached using an estimating process; it may consti-
tute a single value or a range of values.

Analogous Esti-
mating107

An estimating technique that uses the values of
parameters (such as scope, cost, budget, and dura-
tion) or measures of scale (such as size, weight,
and complexity) from a previous, similar activity as
the basis for estimating the same parameter or
measure for a future activity.

Parametric Esti-
mating108

An estimating technique that uses a statistical rela-
tionship between historical data and other variables
(e.g., lines of code) to calculate an estimate for
activity parameters, such as scope, cost, budget,
and duration.

104 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

105 Term and definition(s) adapted whole or in part from
http://www.agilebok.org/index.php?title=Relative_Prioritization_or_Ranking

106 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

107 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

108 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

CMU/SEI-2013-TN-021 | 49

Traditional Terms: Bar Chart (or Gantt Chart)

Definition109 Is there an equivalent in the Agile World?

A graphic display of schedule-related in-
formation, normally with activities listed
down the left side of the chart, dates
across the top, and activity durations are
shown as horizontal bars.

Traditional World bar or Gantt charts do not have a direct peer in Agile,
but the concept of graphically showing work assignments or other activi-
ties or efforts across a calendar is found in both worlds.

Perhaps the closest example of a Gantt chart in Agile is an epic board.
The epic board is similar to a story or task board, but sits one level
higher, i.e., at the project/program/portfolio level.

How is it used in the Traditional World? Are there any related terms or concepts?

Bar charts are used throughout the life
cycle, but primarily in pre-systems acquisi-
tion (material solution analysis and tech-
nology development) and systems acqui-
sition (engineering and manufacturing
development and production and deploy-
ment)

Burn -Up Chart
(or Graph) 110

(Agile World def-
inition)

A visual tool displaying progress via a simple line
chart representing work accomplished (vertical ax-
is) over time (horizontal axis)

Burn-up charts can be used at both a sprint (or iter-
ation) and release level.

Burn-Down Chart
(or Graph) 111
(Agile World def-
inition)

A visual tool displaying progress via a simple line
chart representing remaining work (vertical axis)
over time (horizontal axis).

Burn-down charts can be used at both a sprint (or
iteration) and release level.

109 Terms and definition(s) adapted whole or in part from PMI Glossary Definitions

http://www.timetrackingsoftware.com/help/dovtime10/pmi_glossary.htm

110 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

111 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

CMU/SEI-2013-TN-021 | 50

Traditional Terms: Critical Path

Definition112 Is there an equivalent in the Agile World?

The critical path is the “path” through a
project with the shortest schedule and
where the activities have the least flexibil-
ity or float. As such, any delay to an activi-
ty on the critical path will likely delay the
project.

The Critical Path Method is a technique
that aids understanding of the dependen-
cy of events in a project and the time re-
quired to complete them. Activities that,
when delayed, have an impact on the total
project schedule are critical and said to be
on the critical path.

There isn’t a direct peer in Agile due to the different planning approach-
es. However, the Agile roadmap is the vehicle to coordinate dependen-
cies across releases, and the Agile release plan is the vehicle to coordi-
nate dependencies across sprints or iterations.

Also, when working with a multi-team project, epic boards can be used
to coordinate story dependencies and ensure iteration alignment of fea-
tures.

How is it used in the Traditional World? Are there any related terms or concepts?

Planning Backward
Pass113

Calculating late finish dates and late start dates for
uncompleted activities by working backwards
through the schedule network logic from the pro-
ject's end date

Forward Pass114 Calculating early start and early finish dates for
uncompleted activities.

Network Logic115 The collection of schedule activity dependencies
that makes up a project schedule network diagram.

Project Schedule
Network Dia-
gram116

A schematic display of the logical relationships
among the project schedule activities, and always
drawn from left to right to reflect project work chro-
nology.

112 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

113 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

114 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

115 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

116 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

CMU/SEI-2013-TN-021 | 51

Traditional Terms: Derived Requirements

Definition117 Is there an equivalent in the Agile World?

A lower-level requirement that is deter-
mined to be necessary for a top-level re-
quirement to be met.

This term means essentially the same in both the Traditional World and
Agile.
In Agile, this is often referred to as splitting user stories, and these are
uncovered during many stages in the development, and are fed into
the backlog for active consideration for the next release or itera-
tion/sprint.

In the Traditional World, however, they must (in theory) all be discov-
ered and articulated at project start as part of the requirements refine-
ment and architectural design processes.

How is it used in the Traditional World? Are there any related terms or concepts?

During the user needs phase, and possibly
into the technology opportunities and re-
sources phase.

Requirement118 A condition or capability needed by a user to solve
a problem or achieve an objective.

Quality Attrib-
ute119

A requirement that specifies the degree of an at-
tribute that affects the quality that the system or
software must possess, such as performance,
modifiability, usability.

Story (or User
Story) 120
(Agile World
definition)

Often written on 3” x 5” cards, a story (or user sto-
ry) is a high-level requirement definition written in
everyday or business language.

117 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering

– Vocabulary; December 15, 2010

118 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

119 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

120 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

CMU/SEI-2013-TN-021 | 52

Traditional Terms: Earned Value Management (EVM)

Definition121 Is there an equivalent in the Agile World?

A method combining scope, schedule, and
resource data into a measure of perfor-
mance and progress by comparing what
was budgeted for a task (time and re-
sources) against what the task actually
required (time and resources).

Typically, it is difficult to use the Traditional waterfall-related concepts of
earned value management (EVM) in Agile. However, Rawsthorne122
proposes how a functional work breakdown structure (WBS) can pro-
vide a structure for business metrics (business value, earned business
value), which when combined with burn-down charts can provide a
good, composite understanding of the progress of a project.

How is it used in the Traditional World? Are there any related terms or concepts?

EVM can be used throughout the life cy-
cle, but is primarily used during

• Pre-Systems Acquisition (Material
Solution Analysis and Technology
Development)

• Systems Acquisition (Engineering and
Manufacturing Development and Pro-
duction and Deployment)

• Sustainment (Operations and Sup-
port)

Actual Cost of
Work Performed
(ACWP)123

The costs actually incurred and recorded in accom-
plishing the work performed within a given time
period.

Budget at
Completion
(BAC) 124

The sum of all the budgets for the work to be per-
formed on a project; can also be done for a work
breakdown structure component or for a schedule
activity.

Cost Perfor-
mance Index
(CPI) 125

The ratio of earned value to actual costs.

Estimate at
Completion
(EAC) 126

The expected total cost when the defined scope of
work has been completed; most EAC forecasts
adjust the original cost estimate based on actual
performance to date.

Schedule Per-
formance Index
(SPI) 127

A measure of schedule efficiency on a project; it is
the ratio of earned value (EV) to planned value
(PV).

121 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

122 Discussion adapted from http://www.agilejournal.com/articles/columns/column-articles/54-calculating-earned-
business-value-for-an-agile-project

123 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

124 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

125 Terms and definition(s) adapted whole or in part from PMI Glossary Definitions
http://www.timetrackingsoftware.com/help/dovtime10/pmi_glossary.htm

126 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

127 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

CMU/SEI-2013-TN-021 | 53

Traditional Terms: Entry Criteria/Exit Criteria

Definition128 Is there an equivalent in the Agile World?

Entry Criteria - The state of being that
must be present before an effort can begin
successfully.

Exit Criteria - The state of being that must
be present before an effort can end suc-
cessfully.

While the terms are not in as common use in Agile as they are in the
Traditional World, the concept that there are criteria that must be met
before an effort can start is a management tenant in both worlds.

For example, one entry criteria for a sprint or iteration is a ready product
backlog, which is a backlog that is broken down into small pieces, which
are clear to the developers, immediately actionable, estimated in points
by the team that will implement it, and testable.

Exit Criteria are also related to the Agile concept of “done.”

How is it used in the Traditional World? Are there any related terms or concepts?

Used for planning gates and reviews. Done
(Agile World def-
inition)

Defined differently at different stages of a project,
done means within the context where the term is
understood and accepted—that everything needed
to advance to the next stage (be that to the next
day’s work, the next sprint (or iteration), or release
is complete.

Done Done
(Agile World def-
inition)

Done done means that all of the tasks needed to
create the final, releasable product have been
completed.

128 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering

– Vocabulary; December 15, 2010

CMU/SEI-2013-TN-021 | 54

Traditional Terms: Function Point

Definition129 Is there an equivalent in the Agile World?

A unit of measure for functional size that
looks at the logical view:

• EI - external inputs
• EO - external outputs
• EQ - external inquiries
• EIF - external interface files
• ILF - internal logical files

However, function points do not count
things like coding algorithms or database
structure.

This concept has utility in both the Traditional World and Agile (though
the use and application of function points is not universally or consist-
ently used).

How is it used in the Traditional World? Are there any related terms or concepts?

When used, Function Points are primarily
used during :

• Pre-Systems Acquisition (Technol-
ogy Development)

• Systems Acquisition (Engineering
and Manufacturing Development and
Production and Deployment)

• Sustainment (Operations and Sup-
port)

Complexity
Points
(Agile World def-
inition)

Complexity Points are units of measure used to
estimate development work in terms of complexity,
but not effort—effort is measured by story points.

129 Terms and definition(s) adapted whole or in part from http://www.functionpoints.org

CMU/SEI-2013-TN-021 | 55

Traditional Terms: Increment

Definition130 Is there an equivalent in the Agile World?

A militarily useful capability that can be
developed, produced, acquired, deployed
and sustained; increments each have their
own user-defined threshold and objective
values.

While the underlying concept is similar (a useful capability or an added
value), a Traditional World increment is normally much larger than an
Agile increment.

How is it used in the Traditional World? Are there any related terms or concepts?

The concept of increments can be used
throughout the life cycle but are most used
during:

• Pre-Systems Acquisition (Material
Solution Analysis and Technology
Development)

• Systems Acquisition (Engineering
and Manufacturing Development and
Production and Deployment)

• Sustainment (Operations and Sup-
port)

Increment131
(Agile World def-
inition)

Agile software projects deliver the system in incre-
ments, which represent the value added to the sys-
tem such as newly implemented features, removed
defects, or an improved user experience.

130 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

131 Terms and definition(s) adapted whole or in part from http://my.safaribooksonline.com/book/software-
engineering-and-development/agile-development/9780735625679/return-on-investment/increment

CMU/SEI-2013-TN-021 | 56

Traditional Terms: Inspection

Definition132 Is there an equivalent in the Agile World?

Visual examination of an item and associ-
ated documentation comparing it to prede-
termined standards to determine conform-
ance; does not require the use of special
laboratory equipment or procedures.

This term means essentially the same (for a product) in both the Tradi-
tional World as in Agile. In the Agile method Scrum, however, it also
relates to the Scrum process itself.

In Agile, a product being “ready for inspection” is more subjective be-
cause of the iterative nature of the development and the fact that prod-
ucts are continuously evolving. Therefore a product should be consid-
ered ready for inspection when it is "finished" for the time being (as in a
sprint demonstration, for example). Note that finished does not neces-
sarily mean “done” as more work on that product may be planned, but it
does mean that it is in a stable state.133

Some Agile teams add an additional column or phase to their story
board for team inspections or peer reviews, requiring that all code be
inspected before it can be declared done.

How is it used in the Traditional World? Are there any related terms or concepts?

Inspections are most used during:

• Pre-Systems Acquisition (Material
Solution Analysis and Technology
Development)

• Systems Acquisition (Engineering
and Manufacturing Development and
Production and Deployment)

• Sustainment (Operations and Sup-
port)

Inspection134
(Agile World def-
inition)

Assessment to determine if a process has deviated
outside acceptable limits; four formal opportunities
in Scrum:

• Sprint Planning meeting
• Daily Scrum
• Sprint review
• Sprint Retrospective

Peer Review135 A review of work products performed by peers dur-
ing development of the work products to identify
defects for removal.

Structured
Walkthrough136

A systematic examination of the requirements, de-
sign, or implementation of a system, or any part of
it, by qualified personnel.

132 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

133 Terms and definition(s) adapted whole or in part from DSDM Public Version 4.2

134 Terms and definition(s) adapted whole or in part from The Scrum Guide – The Definitive Guide to Scrum: Rules
of the Game; Schwaber and Sutherland, scruminc

135 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

136 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

CMU/SEI-2013-TN-021 | 57

Traditional Terms: Integrated Master Plan/Integrated Master Schedule

Definition137 Is there an equivalent in the Agile World?

Integrated Master Plan (IMP) - An event-
driven plan capturing the major accom-
plishments necessary to complete a body
of work that ties each accomplishment to
a key program event.

Integrated Master Schedule (IMS) - An
integrated schedule of the tasks needed to
complete the work effort captured in the
IMP; the IMS should include all IMP
events and accomplishments.

When taken in their total, Agile’s five levels of planning (product vision,
product roadmap, release plan(s), sprint (or iteration) plan(s), and daily
commitment(s)) match or perhaps even exceed the information in a
Traditional World IMP and IMS.

Also, an epic board can be used to visualize an integrated Agile plan.

How is it used in the Traditional World? Are there any related terms or concepts?

The IMP and IMS can be used throughout
the life cycle but are most used during:

• Pre-Systems Acquisition (Material
Solution Analysis and Technology
Development)

• Systems Acquisition (Engineering
and Manufacturing Development and
Production and Deployment)

• Sustainment (Operations and Sup-
port)

Schedule Devel-
opment138

The process of creating the project schedule by
analyzing activity sequences, activity durations,
resource requirements, and schedule constraints

Roadmap139
(Agile World def-
inition)

The roadmap distills the vision into a high level plan
that outlines work spanning one or more releases;
requirements are grouped into prioritized themes,
each with an execution estimate.

137 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

138 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

139 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

CMU/SEI-2013-TN-021 | 58

Traditional Terms: Integrated Product Team (IPT)

Definition140 Is there an equivalent in the Agile World?

Multi-disciplinary teams to identify, explore
and resolve issues, and to provide rec-
ommendations to decision makers.

• Working-level IPTs (WIPTs) fo-
cus on program issues and sta-
tus, identify risks, and seek im-
provement opportunities.

• Overarching IPTs (OIPTs) focus
on strategic guidance, program
assessment, and issue resolu-
tion.

• Program-level IPTs (PIPTs) fo-
cus on program execution and
may include both government
and contractor representatives.

The term means the same in Agile; however in Agile there is a signifi-
cantly greater emphasis placed on the team with regard to planning;
they have a much greater voice and are much more active.

Perhaps the best peer term in Agile is cross functional teams, which are
groups of people who collectively represent the entire organization’s
interests in a specific product or product family.141

How is it used in the Traditional World? Are there any related terms or concepts?

IPTs are used in all aspects of Traditional
waterfall.

Feature
Teams142
(Agile World def-
inition)

Small, cross-functional teams focused on designing
and building specific feature groupings.

Stakeholder143 An individual, group, or organization who may af-
fect, be affected by, or perceive itself to be affected
by a project’s activities, products, or services.

Red Team144 Red teams are groups of experts brought in by an
enterprise to challenge plans, programs, assump-
tions, etc. as well as to play devil’s advocate and
related roles.

140 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

141 Adapted whole in in part from http://theagileproductmanager.blogspot.com/2008/07/whats-cross-functional-
team-and-why.html

142 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

143 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

144 Terms and definition(s) adapted whole or in part from The Final Report of the Defense Science Board Task
Force on the Role and Status of DoD Red Teaming Activities

CMU/SEI-2013-TN-021 | 59

Traditional Terms: Key Performance Parameters (KPPs)

Definition145 Is there an equivalent in the Agile World?

A critical or essential system characteris-
tic; normally has a threshold and an objec-
tive value.

While there is no direct equivalent or peer for this term in the Agile
World, this type of information is critical to both the Traditional World
and the Agile World.

In Agile, this information is normally captured in Agile stories (or user
stories), though the concept of technical user stories (those created by
the development teams rather than those created by the product owner)
is contentious within Agile.

How is it used in the Traditional World? Are there any related terms or concepts?

Planning and Testing

Requirements
Analysis146

Definition and refinement of system, subsystem,
and lower-level functional and performance re-
quirements and interfaces to facilitate the architec-
ture design process; establishes the detailed func-
tional, interface, and temporal aspects of the
system to unambiguously communicate system
behavior in its intended environment, and the de-
velopment of lower tier functional and performance
requirements that need to be allocated to the sys-
tem physical architecture.

Performance
Specification147

A document that specifies the performance charac-
teristics that a system or component must possess.

Quality Attrib-
ute148

A requirement that specifies the degree of an at-
tribute that affects the quality that the system or
software must possess, such as performance, mod-
ifiability, usability.

145 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

146 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

147 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

148 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

CMU/SEI-2013-TN-021 | 60

Traditional Terms: Lightweight Process

Definition149 Is there an equivalent in the Agile World?

A process with a single thread of control; a
task.

This is a heavily loaded term, as Agile development methods are fre-
quently characterized as “lightweight” and traditional as “heavyweight.”

However, the underlying concept is valid in both the Traditional World
and Agile.

How is it used in the Traditional World? Are there any related terms or concepts?

Both the concept of lightweight and heav-
yweight processes are normally used dur-
ing:

• Pre-Systems Acquisition (Technol-
ogy Development)

• Systems Acquisition (Engineering
and Manufacturing Development)

Process150 The combination of people, equipment, materials,
methods, and environment that produces a given
product or service.

Heavyweight
Process151

A process with its own memory and multiple
threads of control

149 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering

– Vocabulary; December 15, 2010

150 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

151 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

CMU/SEI-2013-TN-021 | 61

Traditional Terms: Milestone A/Milestone B/Milestone C

Definition152 Is there an equivalent in the Agile World?

A scheduled event used to measure pro-
gress;

• Milestone A precedes a program
moving into Technology Devel-
opment (TD)

• Milestone B precedes a program
moving into the Engineering and
Manufacturing Development
(EMD)

• Milestone C precedes a program
moving into Production and De-
ployment (P&D)

This term means the same thing for a program in the Traditional World
as well as a program using an Agile method. However, the data and
documents normally required in the Traditional World normally exceed
that which is produced in Agile (though Agile does produce the data and
documents to address the primary intent of the milestones—is the pro-
gram ready to proceed?)

However, when these concepts are used in an Agile World, care needs
to be taken that the inherent conflicts are addressed so not to impact
the program with unnecessary documentation while ensuring that es-
sential documents are still included.

How is it used in the Traditional World? Are there any related terms or concepts?

Milestone decision points are fundamental
to planning and management of programs

Technology De-
velopment
Phase153

Designed to reduce technology risk and to deter-
mine the appropriate set of technologies to be inte-
grated into the full system.

Engineering and
Manufacturing
Development
Phase154

Consists of integrated system design (ISD) and
system capability and manufacturing process
demonstration (SC&MPD).

Production and
Deployment
Phase155

Designed to achieve an operational capability that
satisfies the mission need, this phase consists of
low-rate initial production (LRIP) and full-rate pro-
duction and deployment (FRP&D) separated by a
full-rate production decision review (FRPDR).

152 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering

– Vocabulary; December 15, 2010

153 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

154 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

155 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 62

Traditional Terms: Oversight

Definition156 Is there an equivalent in the Agile World?

Review activity by the Office of the Secre-
tary of Defense (OSD), the Joint Staff
(JS), DoD Components, and congression-
al committees of DoD programs to deter-
mine current status, ascertain if the law or
other desires of Congress are being fol-
lowed, or as a basis for possible future
legislation.

Programs are subject to oversight whether they are in the Traditional
World or in the Agile World. However, with the passage of such legisla-
tion as the NDAA of 2010 Section 804 and efforts such as the USN’s IT
Streamlining, the form of oversight will often vary depending on the
whether the project is using traditional or Agile methods.

How is it used in the Traditional World? Are there any related terms or concepts?

Oversight is fundamental to planning and
management of programs.

Review157 A process or meeting during which a work product,
or set of work products, is presented to project per-
sonnel, managers, users, customers, or other inter-
ested parties for comment or approval.

Material Devel-
opment Deci-
sion158

Formal entry point into the acquisition process that
normally requires an initial capabilities document
(ICD) and study guidance for the analysis of alter-
natives (AoA).

Critical Design
Review159

A multi-discipline technical review to ensure that a
system can proceed into fabrication, demonstration,
and test, and can meet stated performance re-
quirements within cost, schedule, risk, and other
system constraints.

Full-Rate Produc-
tion Decision
Review160

A review conducted at the conclusion of low-rate
initial production (LRIP) effort that authorizes entry
into the full-rate production (FRP).

156 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

157 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

158 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

159 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

160 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 63

Traditional Terms: Peer Review

Definition161 Is there an equivalent in the Agile World?

A review of work products performed by
peers during development of the work
products to identify defects for removal.

Paired programming is a specific type of peer review used in Agile
(most consistently in eXtreme programming).

However, while the concept of peers participating in all phases of plan-
ning, design, execution, and review is fundamental to several Agile
methods, peer reviews are generally confined to product review in the
Traditional World.

How is it used in the Traditional World? Are there any related terms or concepts?

Peer review is used during the develop-
ment process

Pair Program-
ming162
(Agile World def-
inition)

Two developers (sometimes referred to as the
“driver” for the person actually coding and the “ob-
server”) working side-by-side to create a single
feature; it provides real-time code review, allows
one developer to think ahead while the other thinks
about the work at hand, and supports cross-
training.

The concept can also extend to pair designing and
pair unit testing. It provides real time peer reviews.

Inspection163 Visual examination of an item and associated doc-
umentation comparing it to predetermined stand-
ards to determine conformance; does not require
the use of special laboratory equipment or proce-
dures.

161 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering

– Vocabulary; December 15, 2010

162 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

163 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 64

Traditional Terms: Performance Measurement Baseline (PMB)

Definition164 Is there an equivalent in the Agile World?

An integrated scope-schedule-cost plan
for the project work against which project
execution is compared to measure and
manage performance.

The closest concept for this is velocity, which like the performance
measurement baseline is a relative measure of how much work is ac-
complished by the team. A release plan can also be viewed as a high-
level PMB.

In Agile, the velocity calculated as the number of story points associated
with stories (or user stories) that are finished by a team over a given
period of time.
burn-down charts—which graphically show how much work remains or
how much work has been “burned down” over time—and burn-up
charts—which are the same except they show how much work has
been accomplished over time— are also very similar.

How is it used in the Traditional World? Are there any related terms or concepts?

The performance measurement baseline
is used throughout the life cycle but is
most used during:

• Pre-Systems Acquisition (Ma-
terial Solution Analysis and
Technology Development)

• Systems Acquisition (Engineer-
ing and Manufacturing Develop-
ment and Production and De-
ployment)

• Sustainment (Operations and
Support)

Burn -Up Chart
(or Graph) 165

(Agile World def-
inition)

A visual tool displaying progress via a simple line
chart representing work accomplished (vertical ax-
is) over time (horizontal axis)

Burn-up charts are also normally used at a release
level as well as the sprint (or Iteration) levels.

Agile burn-up charts are conceptually equivalent to
the Traditional World’s Earned Value accumulated
at a specific date [Cabri 2006].

Burn-Down Chart
(or Graph) 166

(Agile World def-
inition)

A visual tool displaying progress via a simple line
chart representing remaining work (vertical axis)
over time (horizontal axis).

Burn-down charts can be used at both a sprint (or
iteration) and release level.

Performance
Indicator167

An assessment indicator that supports the judg-
ment of the process performance of a specific pro-
cess.

164 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

165 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

166 Term and definition(s) adapted whole or in part from http://www.telerik.com/agile-project-management-
tools/agile-resources/vocabulary.aspx

167 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering
– Vocabulary; December 15, 2010

CMU/SEI-2013-TN-021 | 65

Traditional Terms: Preplanned Product Improvement (P3I)

Definition168 Is there an equivalent in the Agile World?

Planned future improvement of develop-
mental systems for which design consid-
erations are effected during development
to enhance future application of projected
technology.

Includes improvements planned for ongo-
ing systems that go beyond the current
performance envelope to achieve a need-
ed operational capability.

While there is some credence to the notion that Agile methods are simi-
lar to P3I in that Agile methods stress delivering the highest priority re-
quirements first, P3I itself remains firmly rooted in the Traditional World
as the improvements are all planned up front.

When applying Agile methods, the concept of P3I can be used to reduce
long term refactoring costs or technical debt. However, this must be
balanced against the Agile tenet of simplicity—maximizing the amount
of work not done.

How is it used in the Traditional World? Are there any related terms or concepts?

Preplanned product improvement con-
cepts can be used throughout the life cy-
cle but are most used during:

• Pre-Systems Acquisition
(Technology Development)

• Systems Acquisition (Engineer-
ing and Manufacturing Develop-
ment and Production and De-
ployment)

• Sustainment (Operations and
Support)

Big Design Up
Front (BDUF)

An extensive up-front design effort which many
Agilists see as the hallmark of Traditional waterfall.

Product
Improvement (PI)

169

Effort to incorporate a configuration change involv-
ing engineering and testing effort on end items and
depot repairable components, or changes on other-
than-developmental items to increase system or
combat effectiveness or extend useful military life.
Usually results from feedback from the users.

168 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

169 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 66

Traditional Terms: Program Evaluation and Review Technique (PERT)

Definition170 Is there an equivalent in the Agile World?

A technique for management of a program
through to completion by constructing a
network model of integrated activities and
events and periodically evaluating the
time/cost implications of progress.

There is no peer per se in Agile. However, Agile does present the op-
portunity to associate stories (or user stories) that have dependencies
on one another in the release plan. However, this is balanced against
the goal that stories (or user stories) are able to stand alone and not be
interdependent.

How is it used in the Traditional World? Are there any related terms or concepts?

The PERT technique and charts are used
throughout the life cycle.

PERT Chart171 A graphic portrayal of milestones, activities, and
their dependency upon other activities for comple-
tion and depiction of the critical path.

Story Maps172
(Agile World def-
inition)

A visual technique to prioritize Stories (or User Sto-
ries) by creating a “map” of users, their activities,
and the Stories (or User Stories) needed to imple-
ment the functionality needed.

170 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

171 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

172 Term and definition(s) adapted whole or in part from http://www.agilelearninglabs.com/modules/story-mapping/

CMU/SEI-2013-TN-021 | 67

Traditional Terms: Progressive Elaboration

Definition173 Is there an equivalent in the Agile World?

Continuously improving and detailing a
plan as more detailed and specific infor-
mation and more accurate estimates be-
come available as the project progresses,
and thereby producing more accurate and
complete plans that result from the suc-
cessive iterations of the planning process.

While not using the same terminology, this concept is fundamental to
Agile methods and underlies the five levels of Agile planning.

How is it used in the Traditional World? Are there any related terms or concepts?

Progressive Elaboration concepts can be
used throughout the life cycle but are most
used during:

• Pre-Systems Acquisition
(Technology Development)

• Systems Acquisition (Engineer-
ing and Manufacturing Develop-
ment and Production and De-
ployment)

• Sustainment (Operations and
Support)

Rolling Wave
Planning

Rolling wave planning involves planning near-term
work in the greatest detail down to the lowest level
of the WBS, while planning the mid-term and long-
term at increasing higher levels of the WBS.

It is called “rolling” because the more-detailed plan-
ning for the next one-to-two work periods is done
during the current work period such that planning
“rolls forward” along with the project schedule.

Five Levels of
Agile Planning174
(Agile World def-
inition)

The five levels of Agile planning are:
• Vision - The highest level
• Roadmap - The vision distilled into a high

level plan.
• Release – A planning segment of priori-

tized requirements and execution esti-
mates.

• Sprint (or Iteration) – A predefined, time-
boxed period in which working software is
created.

• Daily Work – a daily communication and
planning forum.

173 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

174 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

CMU/SEI-2013-TN-021 | 68

Traditional Terms: Prototype

Definition175 Is there an equivalent in the Agile World?

A model or preliminary implementation of
a piece of software suitable for the evalua-
tion of system design, performance or
production potential, or for the better un-
derstanding of the software requirements.

This term means approximately the same in the Traditional World and
Agile.

How is it used in the Traditional World? Are there any related terms or concepts?

Prototypes can be used throughout the life
cycle but are most used during:

• Technology Opportunities and
resources

• Pre-Systems Acquisition (Ma-
terial Solution Analysis and
Technology Development)

• Systems Acquisition (Engineer-
ing and Manufacturing Develop-
ment)

Risk-Based
Spike
(Agile World def-
inition)

A spike (a small iteration or experiment to research
and answer a problem) driven by risk considera-
tions.

Spike
(Agile World def-
inition)

A spike is a small iteration or experiment to re-
search and answer a problem.

Brassboard176 An experimental device to determine feasibility
and/or to develop technical or operational data;
normally capable of being used in the field and may
resemble the end item but it is not production
ready.

Breadboard177 An experimental device to determine feasibility
and/or to develop technical or operational data;
normally only used in a lab, it may not resemble the
end item and is not production ready.

175 Terms and definition(s) adapted whole or in part from ISA/IEC/IEEE 24765 Systems and Software Engineering

– Vocabulary; December 15, 2010

176 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

177 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 69

Traditional Terms: Requirements Scrub

Definition178 Is there an equivalent in the Agile World?

A review of a draft requirements for ade-
quacy and clarity; may also include re-
viewing comments regarding the require-
ments to validate and prioritize the
requirements.

A “requirements scrub” is at the heart of Agile planning (backlog pruning
or backlog grooming); it is done when clarifying and prioritizing the
product backlog, the release backlog, the sprint (or iteration) backlog,
and (if used) the daily backlog.

How is it used in the Traditional World? Are there any related terms or concepts?

In a true Traditional waterfall program, the
requirements scrub is done during user
needs as part of the requirements pro-
cess.

Relative
Prioritization179

A 9-step process to prioritize requirements:
• List the requirements
• Estimate the relative benefit of each (1 to

9)
• Estimate the relative penalty of not includ-

ing each (1 to 9)
• Sum 2 and 3 (applying weighting is op-

tional)
• Estimate the relative cost to build (1 to 9)
• Estimate the relative cost to implement (1

to 9)
• Estimate the relative degree of technical

risk (1 to 9)
• Calculate the priority number (formulas

vary)
• Sort the requirements in priority order

Backlog180
(Agile World def-
inition)

The backlog is a prioritized list of stories (or user
stories) and defects ordered from the highest priori-
ty to the lowest.

Backlogs include both functional and non-functional
stories (or user stories) as well as technical team-
generated stories.

178 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

179 Term and definition(s) adapted whole or in part from Agile Glossary: Words and Terms Common to Agile Meth-
ods; http://www.aspe-sdlc.com

180 Term and definition(s) adapted whole or in part from http://www.accurev.com/wiki/agile-glosssary

CMU/SEI-2013-TN-021 | 70

Traditional Terms: System Specification

Definition181 Is there an equivalent in the Agile World?

A description of the system-level require-
ments, constraints, and interfaces (func-
tional, performance, and design) along
with the qualification conditions and pro-
cedures for their testing and acceptance.

Most similar to the Agile epic, though perhaps a better comparison
would be to a group of epics.

How is it used in the Traditional World? Are there any related terms or concepts?

In a true Traditional World program, the
system specification is initially reviewed at
the preliminary design review and is ap-
proved at the critical design review.

System182 1) The organization of hardware, software, mate-
rial, facilities, personnel, data, and services
needed to perform a designated function with
specified results, such as the gathering of
specified data, its processing, and delivery to
users.

2) A combination of two or more interrelated piec-
es of equipment (or sets) arranged in a func-
tional package to perform an operational func-
tion or to satisfy a requirement.

Epics or Epic
Stories
(Agile World def-
inition)

A very large user story—too large to be accurately
estimated or completed in a reasonably number of
iterations.

Epics are common when creating the initial product
backlog, and are broken down into smaller stories
(or user stories) for planning and execution.

181 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

182 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 71

Traditional Terms: Traditional Waterfall Methods

Definition Is there an equivalent in the Agile World?

A plan-driven software development
methodology using distinct phases; phas-
es are performed in a single-pass, se-
quential order, and the initiation of any
subsequent phase requires the docu-
mented completion of the previous phase.

The notional phases are:

• Requirements elicitation
• Requirements analysis
• System design
• System construction
• System test and integration
• System operation
• System retirement

The main instantiations are the original
waterfall paradigm and the V-shaped par-
adigm.

There is an argument that an Agile sprint (or iteration) is a mini-
waterfall; however there are key aspects of Agile methods not present
in Traditional waterfall such as:

• Continuous integration
• Continuous test
• Sustainable pace
• Set scope and budget
• Daily meetings

In addition, a series of mini-waterfalls does not allow for the continuous
reprioritization of requirements to be addressed in each mini-waterfall.

How is it used in the Traditional World? Are there any related terms or concepts?

 Incremental
Approach183

Determines user needs and defines the overall ar-
chitecture, but then delivers the system in a series
of increments or builds where the first build incorpo-
rates a part of the total planned capabilities, the
next build adds more capabilities, and so on, until
the entire system is complete

Evolutionary Ac-
quisition (EA) 184

Preferred DoD strategy for rapid acquisition of ma-
ture technology which delivers capability in incre-
ments while recognizing upfront the need for future
capability improvements; each increment is a mili-
tarily useful and supportable operational capability
that can be developed, produced, deployed, and
sustained.

183 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

184 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 72

Traditional Terms: Work Breakdown Structure (WBS)

Definition185 Is there an equivalent in the Agile World?

An organized method to break down a
project into logical subdivisions or subpro-
jects at lower and lower levels of details;
very useful in organizing a project.

When taken in their total, the five levels of agile planning (product vi-
sion, product roadmap, release plans, sprint (or iteration) plans, and
daily commitments) match or even exceed the information captured in a
Traditional World WBS.

A WBS can also be associated with the Scrum teams that make up the
Scrum of Scrums on a larger program.

How is it used in the Traditional World? Are there any related terms or concepts?

A WBS is used to organize all work on a
Traditional World program.

In addition, the structure of the WBS tends
to match the structure of both the govern-
ment and development contractor organi-
zations (and vice versa), which may or
may not improve the project’s chances for
success.

Organizational
Breakdown
Structure (OBS)

186

A hierarchical depiction of an organization relating
work packages to the organizational units perform-
ing the work.

Cost Breakdown
Structure187

A system for subdividing a program into hardware
elements and subelements, functions and subfunc-
tions, and cost categories to provide for more effec-
tive management and control of the program.

Contract Work
Breakdown
Structure
(CWBS) 188

A complete WBS for a contract. It includes the
DoD-approved program WBS extended to the
agreed contract reporting level and any discretion-
ary extensions to lower levels for reporting or other
purposes. It includes all the elements for the prod-
ucts (hardware, software, data, or services) that are
the responsibility of the contractor. This compre-
hensive WBS forms the framework for the contrac-
tor’s management control system.

185 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and

Terms, 14th Edition, July 2011

186 Terms and definition(s) adapted whole or in part from PMBOK Guide® – Third Edition

187 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

188 Terms and definition(s) adapted whole or in part from DAU Glossary of Defense Acquisition Acronyms and
Terms, 14th Edition, July 2011

CMU/SEI-2013-TN-021 | 73

5 Summary

The Traditional World and the Agile World are simply two instantiations of the software world.
In some ways they are related by cause and effect since the Agile Manifesto and related methods
grew out of a group of developers’ frustrations with the “heaviness” of DoD’s implementation of
waterfall, which had itself grown out of the need for rigor to address a “software crisis.”

Agile methods emphasize structured, multi-level planning, continuous customer involvement,
frequent (if not continuous) test, continuous integration, and frequent delivery of potentially de-
liverable software. As such, Agile methods can be argued to be a better way for many DoD pro-
jects to obtain the insight and control wanted when DoD imposed many of its current practices.
There is no doubt that DoD adoption of Agile methods will require significant cultural and even
perhaps legal (i.e., contracting) changes. However, the possibility that government programs
could nimbly respond to changing environments and requirements on a pace measured in months
instead of years is simply too good of a future to ignore.

We have tried to show, though, that Agile principles are not foreign to software development in
the federal government; there are many examples of Agile or even eXtreme development efforts
over the last decades. We have also tried to show the both the Traditional World and the Agile
World use the same fundamental building blocks and have the same fundamental goals.

This is not to say that traditional methods are the same as Agile methods. They are not. However,
they are two different ways to perform the same tasks—analyze, design, build, test, and deploy. In
some ways, they can be thought of as parallel worlds, where the “what” to do is the same but the
“how” to do it is different.

Thus, the difference is in perspective and application—and words. By considering the similarities,
the goal is to ease fear and rejection of either method by the other community. By no means have
we concluded they are equivalent.

We deliberately limited this paper to a total of 50 terms, though astute readers will point out we
included dozens more in the “related terms and concepts” block. We were surprised as we began
this paper that this type of Rosetta Stone didn’t already exist, though we did find a number of
smaller efforts.189

We hope this technical note stimulates discussions among practitioners in both communities and
that regular revisions can be made to this report so that terms and definitions can be added, updat-
ed, or removed as needed.

Even more, we hope that this technical report helps facilitate DoD’s adoption of Agile methods.
We hope that we have shown that the two worlds are not as far apart as some believe.

189 However, as we worked on the paper and the term count went well above 200 and was still climbing—as every

term seemed to require two-to-three more in its definition—we did grasp part of the reason.

CMU/SEI-2013-TN-021 | 74

CMU/SEI-2013-TN-021 | 75

Appendix A Waterfall Software Development – DoD’s
Misplaced Emphasis?

Despite the widely-held view that the waterfall development paradigm is DoD’s and the federal
government’s “tradition,” there are many examples where federal software development could
rightly be called Agile—even extreme—long before these terms assumed their current interpreta-
tions.

Larman and Basili provide several examples of this, starting in the 1960s [Larman 2003]. Project
Mercury used half-day, time-boxed iterations and practiced test-first development for each micro-
increment. In the 1970s, the Light Airborne Multipurpose System (LAMPS) incrementally deliv-
ered millions of lines of code in 45 time-boxed iterations that were each one month long. Each of
the LAMPS iterations was delivered on time and under budget.

Also in the 1970s, the primary avionics software for the space shuttle was delivered in a series of
17 iterations over 31 months. They avoided waterfall (although they did call it the “ideal” soft-
ware development cycle) because the requirements were not stable. Instead, they used “… an im-
plementation approach (based on small incremental releases) … which met the objectives by ap-
plying the ideal cycle to small elements of the overall software package on an iterative basis.”

While not mentioned in Larman and Basili’s paper, in the 1970s the Department of Veteran Af-
fairs made colocation a primary mechanism for the VistA system, when many VistA applications
were built by doctors and/or clinicians working side by side with a programmer. In fact, in many
cases the doctor or clinician were themselves the programmer using the MUMPS language (Mas-
sachusetts General Hospital Utility Multi-Programming System).

These examples and more indicate that many people in the federal government understood the
benefits of an iterative, incremental approach. Larman and Basili also show that many people
knew that what was to become known as a “waterfall” approach would not work for large, com-
plex systems. For example, they provide a quote from Gerald Weinburg, who worked on Project
Mercury: “… all of us, as far as I can remember, thought waterfalling of a huge project was rather
stupid, or at least ignorant of the realities … I think what the waterfall description did for us was
make us realize we were doing something else, something unnamed except for ‘software devel-
opment.’”

But while there were successes, there were failures—so much that by the late 1960s it was
deemed a “software crisis.” The NATO Science Committee held a conference in 1968 on “soft-
ware engineering,” apparently the first time this term was used and “… deliberately chosen as
being provocative, in implying the need for software manufacture to be based on the types of the-
oretical foundations and practical disciplines, that are traditional in the established branches of
engineering” [Naur 1969].

This conference focused on such issues as

• the problems of achieving sufficient reliability in the data systems which are becoming in-
creasingly integrated into the central activities of modern society

CMU/SEI-2013-TN-021 | 76

• the difficulties of meeting schedules and specifications on large software projects

• the education of software (or data systems) engineers

• the highly controversial question of whether software should be priced separately from hard-
ware

At almost the same time (1970), Dr. Winston Royce published Managing the Development of
Large Software Systems, where he presented what he were his “personal views about managing
large software developments” [Royce 1970]. Though Royce never used the term “waterfall” in his
paper and the paper is in fact an argument for iterative development, many people consider his
paper as the basis for the waterfall development methodology to the point where he has been
called the “father of waterfall.”

Royce began his paper with what I will call Royce Model #1, which he felt was the simplest form
of a software development process:

Figure 8: Royce Model #1

Royce captioned this Implementation steps to deliver a small computer program for internal op-
erations.

Royce said Model #1 was potentially acceptable when “… the effort is sufficiently small and if
the final product is to be operated by those who built it—as is typically done with computer pro-
grams for internal use.” Royce then described Royce Model #2, which he called “more grandi-
ose:”

Analysis
Coding

CMU/SEI-2013-TN-021 | 77

Figure 9: Royce Model #2

In a very good example of how the choice of words can have an impact far beyond what the au-
thor perhaps envisioned, Royce captioned Model #2 as Implementation steps to develop a large
computer program for delivery to a customer.

Had a reader stopped at that caption, they would have thought Royce just described his recom-
mended approach for delivering large computer programs, though a complete reading of his paper
would have dispelled this. Royce’s paper continued with the addition of the “… iterative relation-
ship between successive development phases for this scheme,” or Royce Model #3:

System
Requirements

Software

Requirements

Analysis

Program
Design

Coding

Test

Operations

CMU/SEI-2013-TN-021 | 78

Figure 10: Royce Model #3

But even while Royce said that he believed in the concept of Model #3, he felt that even this
model was “risky and invites failure” (italics added). As an example, he pointed out that with test-
ing at the end of the development cycle, issues with timing, storage, input/output transfers, and the
like, are not discovered until a major redesign is invariably required.

Royce observed: “The required design changes are likely to be so disruptive that the software re-
quirements upon which the design is based and which provides the rationale for everything are
violated. Either the requirements must be modified, or a substantial change in the design is re-
quired. In effect the development process has returned to the origin and one can expect up to a
100-percent overrun in schedule and/or costs (italics added)”.

Royce devoted the remainder of his paper to the “… five additional features that must be added to
this basic approach to eliminate most development risks.” These included his recommendation
that this model be run at least twice (iteratively), with the first time being a significant prototyping
phase that was used to better understand the requirements, better understand the technologies in-
volved, and ensure it was providing what the customers actually needed.

Royce also recommended that the customer be involved well before testing as “for some reason
what a software design is going to do is subject to wide interpretation even after previous agree-
ment” (italics added).

As stated earlier, Royce never used the term waterfall in his paper. Again quoting from Larman
and Basili, Walker Royce, Dr. Royce’s son, said this of his father and the paper:

System
Require-

Software
Require-

Analysis

Program
Design

Coding

Test

Operations

CMU/SEI-2013-TN-021 | 79

“He was always a proponent of iterative, incremental, evolutionary development. His paper de-
scribed the waterfall as the simplest description, but that it would not work for all but the most
straightforward projects. The rest of his paper describes [iterative practices] within the context of
the 60s/70s government contracting models (a serious set of constraints)” [Larman 2003].

But the federal government’s push for engineering rigor and greater control settled on what was
now known as “waterfall.” Manifested by extensive documentation, a strong preference for a sin-
gle-pass, sequential development method, and heavy oversight, the waterfall development method
was perhaps best captured in DOD-STD 2167 (1985).

However, even as DOD-STD 2167 was released, the document itself and the waterfall method it
espoused were already under attack. In 1986, a draft copy of Revision A to MIL-STD 2167 ap-
peared which removed the emphasis on top-down design and called out rapid prototyping as an
alternative to the waterfall. In 1987, the Defense Science Board recommended that 2167 be re-
vised to “ … to remove any remaining dependence upon the assumptions of the “waterfall” model
and to institutionalize rapid prototyping and incremental development” [DSB 1987].

But the perception that waterfall was the federal government’s preferred development approach
had become firmly embedded. Federal software development and acquisition still retained a
strong hardware-oriented, waterfall flavor, as was argued in a 2010 report issued by the National
Research Council [NRC 2010]:

For example, the terminology used to describe the engineering and manu-
facturing development phase emphasizes the hardware and manufacturing
focus of the process ... Preliminary design reviews (PDRs) and critical de-
sign reviews (CDRs), hallmarks of the waterfall SDLC model, are pre-
scribed for every program, with additional formal Milestone Decision Au-
thority (MDA) decision points after each design review. At least four and
potentially five formal MDA reviews and decision points occur in every
evolutionary cycle.

This isn’t to say that traditional waterfall does not or has not delivered quality products that are in
the field and working today—it obviously has. However, more often than not the traditional world
has delivered quality products despite waterfall, not because of waterfall.

Continuing to quote from the 2010 National Research Council report:

As a result, although the oversight and governance process of DODI 5000
does not forbid the iterative incremental software development model with
frequent end-user interaction, it requires heroics on the part of program
managers (PMs) and MDAs to apply iterative, incremental development
(IID) successfully within the DODI 5000 framework (italics added).

Today, many of the DOD’s large IT programs therefore continue to adopt
program structures and software development models closely resembling
the waterfall model rather than an IID model with frequent end-user inter-
action. Even those that plan multiple delivered increments typically at-
tempt to compress a waterfall-like model within each increment.

CMU/SEI-2013-TN-021 | 80

So if the premise that DOD-STD 2167 and other waterfall-based standards and instructions fun-
damentally misunderstood Royce could be accepted, it follows that DoD’s multi-decade emphasis
on waterfall was misplaced. And if that is accepted, one can only wonder what DOD’s current
software environment would be like if 2167 had emphasized DoD’s “Agile roots” instead.

CMU/SEI-2013-TN-021 | 81

Appendix B History of Agile190

For additional information, please see these other SEI Technical Notes:

• Agile Methods: Selected DoD Management and Acquisition Concerns; CMU/SEI-2011-TN-
002

• Considerations for Using Agile in DoD Acquisition; CMU/SEI-2010-TN-002

In many ways there is nothing new in Agile. As we showed in Appendix A there were a number
of software development efforts in the federal government that were agile well before agile be-
came a well-known term. They were what we call 3I—inventive, iterative, and incremental.

What is new about Agile is how these “old” components are combined with some new compo-
nents (ideas, practices, theories, etc.) to yield something more powerful and coherent. However,
as Jim Highsmith asserts, “the Agile approaches scare corporate bureaucrats—at least those that
are happy with pushing process for process’ sake versus trying to do what is best for the ‘custom-
er’ and deliver something timely and tangible ‘as promised’—because they run out of places to
hide.”191

This coherence—and the current energy driving advocacy of Agile—was the result of a remarka-
ble meeting among thought leaders and consultants192 in software development who would nor-
mally have been competitors. In February 2001 17 people met to try to find common ground and
ultimately produced the Agile Software Development Manifesto. This document detailed all of
their commonalities—overlooking, for the moment, areas where they had differences of opinion.

Agile Manifesto and Principles

The self-named Agile Alliance shared allegiance to a set of compatible values promoting organi-
zational models based on people, collaboration, and building organizational communities compat-
ible with their vision and principles.193

From the manifesto:

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

190 This section draws extensively from the SEI technical note, Considerations for Using Agile in DOD Acquisition.

191 http://agilemanifesto.org/history.html

192 The signatories were representatives from Extreme Programming, SCRUM, DSDM, Adaptive Software Devel-
opment, Crystal, Feature-Driven Development, Pragmatic Programming, and others: Kent Beck, Mike Beedle,
Arie van Bennekum, Alistair Cockburn, Ward Cunningham, Martin Fowler, James Grenning, Jim Highsmith, An-
drew Hunt, Ron Jeffries, Jon Kern, Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Suther-
land, Dave Thomas.

193 http://agilemanifesto.org/history.html

CMU/SEI-2013-TN-021 | 82

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the
left more.

As the Agile Alliance noted, the four dichotomies listed in the manifesto (such as “individuals and
interactions over processes and tools”) are not intended to suggest that what is on the left is im-
portant and what is on the right is unimportant; rather, what is on the right, while important, is
simply less important than what is on the left.

For example, some believe that the Agile approach advocates providing no documentation other
than the code itself. The Agile community would argue instead that documentation is important,
but no more documentation should be created than is absolutely necessary to support the devel-
opment itself and future sustainment activities. In fact, Agile emphasizes collaboration and the
notion that when documentation replaces collaboration the results are problematic. Documenta-
tion should be the result of collaboration.

The Agile Alliance says the following 12 principles underlie the Agile Manifesto:

• Our highest priority is to satisfy the customer through early and continuous delivery of valua-
ble software.

• Welcome changing requirements, even late in development. Agile processes harness change
for the customer's competitive advantage.

• Deliver working software frequently, from a couple of weeks to a couple of months, with a
preference to the shorter timescale.

• Business people and developers must work together daily throughout the project.

• Build projects around motivated individuals. Give them the environment and support they
need, and trust them to get the job done.

• The most efficient and effective method of conveying information to and within a develop-
ment team is face-to-face conversation.

• Working software is the primary measure of progress.

• Agile processes promote sustainable development. The sponsors, developers, and users
should be able to maintain a constant pace indefinitely.

• Continuous attention to technical excellence and good design enhances agility.

• Simplicity—the art of maximizing the amount of work not done—is essential.

• The best architectures, requirements, and designs emerge from self-organizing teams.

• At regular intervals, the team reflects on how to become more effective, then tunes and ad-
justs its behavior accordingly.194

From these principles, it is understood that Agile is really a philosophy or development approach,
and it comprises a number of more specific methods, for example, eXtreme programming (XP),
Scrum, and Adaptive Software Development (ASD).

194 http://agilemanifesto.org/principles.html

CMU/SEI-2013-TN-021 | 83

CMU/SEI-2013-TN-021 | 84

References/Bibliography

URLs are valid as of the publication date of this document.

[Beck 2001]
Beck, Kent, Beedle, Mike, van Bennekum, Arie, Cockburn, Alistair, Cunningham, Ward, Fowler,
Martin, Grenning, James Highsmith, Jim, Hunt, Andrew, Jeffries, Ron, Kern, Jon, Marick, Brian,
Martin, Robert C., Mellor, Steve, Schwaber, Ken, Sutherland, Jeff, & Thomas, Dave. Manifesto
for Agile Software Development. 2001.
http://agilemanifesto.org/

[Boehm 1976]
Boehm, Barry W. “Software Engineering,” IEEE Transactions on Computers C-25, 12 (Decem-
ber 1976): 1226-1241.

[Boehm 1988]
Boehm, Barry W. “A Spiral Model of Software Development and Enhancement.” Computer (May
1988): 61-72.

[Cabri 2006]
Cabri, Anthony & Griffiths, Mike. Earned Value and Agile Reporting. Quadrus Development
Inc., 2006.

[Cohn 2006]
Cohn, Mike. Agile Estimating and Planning. Pearson Education, 2006.

[Colburn 2008]
Colburn, Alex, Hsieh, Jonathan, Kehrt, Matthew, & Kimball, Aaron. There is no Software Engi-
neering Crisis. 2008.
http://www.cs.washington.edu/education/courses/cse503/08wi/crisis-con.pdf

[DSB 1987]
Defense Science Board. Report of the Defense Science Board Task Force on Military Software,
September 1987.
http://www.dtic.mil/cgi-bin/GetTRDoc?Location=U2&doc=GetTRDoc.pdf&AD=ADA188561

[Gugenberger 2011]
Gugenberger, Pascal. The Waterfall Accident.
http://pascal.gugenberger.net/thoughts/waterfall-accident.html

[Highsmith 2001]
Highsmith, Jim. History: The Agile Manifesto. 2001.
http://agilemanifesto.org/history.html

CMU/SEI-2013-TN-021 | 85

[Lapham 2010]
Lapham, Mary Ann; Williams, Ray; Hammons, Charles (Bud) ; Burton, Daniel; & Schenker, Al-
fred. Considerations for Using Agile in DoD Acquisition (CMU/SEI-2010-TN-002). Software En-
gineering Institute, Carnegie Mellon University, 2010.
http://www.sei.cmu.edu/library/abstracts/reports/10tn002.cfm

[Larman 2003]
Larman, Craig & Basili, Victor. “Iterative and Incremental Development: A Brief History.” Com-
puter 36, 6 (June 2003): 47-56.

[Lehman 1980]
Lehman, M.M. “Programs, Life Cycles, and Laws of Software Evolution,” 1060-1076. Proceed-
ings of the IEEE 68, 9: 1980.

[Naur 1969]
Naur, Peter & Randell, Brian, eds. Software Engineering: Report on a Conference Sponsored by
the NATO Science Committee. 1969

[NRC 2010]
National Research Council. Achieving Effective Acquisition of Information Technology in the
Department of Defense. Committee on Improving Processes and Policies for the Acquisition and
Test of Information Technologies in the Department of Defense. 2010.
http://www.nap.edu/catalog.php?record_id=12823

[Royce 1970]
Royce, W.W. “Managing the Development of Large Software Systems,”1-9. Proceedings of IEEE
WESCON, August 1970. IEEE, 1970 (originally published by TRW).

[Wills 2010]
Wills, Patrick. The Defense Acquisition System. Defense Acquisition University, 2010.

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, search-
ing existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regard-
ing this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters
Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY

(Leave Blank)

2. REPORT DATE

October 2013

3. REPORT TYPE AND DATES
COVERED

Final

4. TITLE AND SUBTITLE

Parallel Worlds: Agile and Waterfall Differences and Similarities

5. FUNDING NUMBERS

FA8721-05-C-0003

6. AUTHOR(S)

M. Steven Palmquist, PE, PMP, Mary Ann Lapham, PMP, CSM, Suzanne Miller CSM, Timothy Chick, Ipek Ozkaya

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-2013-TN-021

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/XPK
5 Eglin Street
Hanscom AFB, MA 01731-2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

n/a

11. SUPPLEMENTARY NOTES

12A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS

12B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

This technical note (TN) is part of the Software Engineering Institute’s series on Agile in the Department of Defense (DoD). It primarily
addresses what at first seems a small issue on the road to Agile adoption—the confusion of terms. However, this is a much larger issue,
as ineffective communications among and between stakeholders is often cited as a significant stumbling block on any project. Confusion
over simple terms is a needless hurdle.

Many terms and concepts used by Agile practitioners seem to confound those working in the DoD’s Traditional World of waterfall-based
environment, and vice versa. The goal of this paper is to assemble terms and concepts from both environments to show both the similar-
ities (of which there are many) and differences (of which there are also many).

A comprehensive cross dictionary was beyond the scope of this work; the authors strove to select from those terms most commonly en-
countered when considering Agile adoption. Therefore, the authors selected terms based on suggestions from both inside and outside
the SEI, but deliberately limited themselves to 25 terms from each environment.

14. SUBJECT TERMS

Agile, waterfall

15. NUMBER OF PAGES

101

16. PRICE CODE

17. SECURITY CLASSIFICATION OF
REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. Z39-18

298-102

	Executive Summary
	Abstract
	Introduction
	1 The Two Worlds — Traditional and Agile
	2 Similarities — The Same Basic Building Blocks
	3 Differences — Significantly Different Perspectives
	4 Differences — Terms and Concepts
	5 Summary
	Appendix A Waterfall Software Development – DoD’s Misplaced Emphasis?
	Appendix B History of Agile
	References/Bibliography

